首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组AX=b的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设三元非齐次线性方程组AX=b的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
admin
2018-09-20
63
问题
设三元非齐次线性方程组AX=b的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,一1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程的通解.
选项
答案
因r(A)=1,故AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)一(η
2
+η
3
)=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)一(η
3
+η
1
)=[2,一3,1]
T
. 因ξ
1
,ξ
2
线性无关,故ξ
1
,ξ
2
是AX=0的基础解系. 取AX=b的一个特解为 [*] 故AX=b的通解为 k
1
[一1,3,2]
T
+k
2
[2,一3,1]
T
+[0,1,0]
T
,k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/sjW4777K
0
考研数学三
相关试题推荐
设若ai=a3=a≠0,a2=a4=一a,求ATX=b的通解.
设随机变量X1,X2,X3,X4独立同分布,且X1~(i=1,2,3,4),求X=的概率分布.
设总体X的概率密度为f(x)=,其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设A为三阶实对称矩阵,且存在可逆矩阵又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)一1;(3)计算行列式|A*+E|.
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
已知f(x)=ax3+x2+2在x=0和x=一1处取得极值,求f(x)的单调区间、极值点和拐点.
随机试题
下列叙述正确的是()
某患者,男,60岁,右侧肢体逐渐抖动半年余,无既往病史。体检:血压199/119mmHg,神志清楚,表情呆板,右上下肢肌力正常,肌张力增高,右上下肢可见静止性震颤,其余神经系统检查未发现异常该病人治疗过程中不能应用的药物是()
人口自然增长率是一定时期内人口自然增长数与该时期
以吐温80作增溶剂的液体制剂,最佳选用的防腐剂是
向土地市场提供交易对象的经济行为主体是()。
张某通过银行贷款购买了某住宅小区住宅楼15层(顶层)的一套二手房。该房屋建筑面积86m2,二室一厅,阳台全封闭。该套房屋主体结构完好,设施、设备完整,上、下水道通畅,但屋顶有轻微渗漏,门窗油漆局部脱落,需要进行小修。该套住宅房屋所有权证上的房产附图为(
根据《水利水电工程施工质量检验与评定规程》SL176—2007,质量缺陷是指对工程质量有影响,但小于()的质量问题。
采用固定总价合同,双方结算比较简单,但是承包商承担了较大的风险,这些风险包括()。
压缩空气储能属于一种物理方式的储能,即空气在整个过程中只存在温度、压强等状态的变化,而不会发生化学方面的变化。储存了众多电力的压缩空气需要放在一间封闭性极好的“屋子”里,而这间“屋子”的“主人”就是盐。食盐开采后会自然留下一个场所,学名叫做“盐穴”。“盐穴
Thefollowingparagraphsaregiveninawrongorder.ForQuestions41-45,youarerequiredtoreorganizetheseparagraphsintoa
最新回复
(
0
)