首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,X的概率分布P{X=i}=(i=-1,0,1),Y的概率密度为fY(y)=,记Z=X+Y. (Ⅰ)求P{Z≤|X=0}; (Ⅱ)求Z的概率密度fZ(z).
设随机变量X与Y相互独立,X的概率分布P{X=i}=(i=-1,0,1),Y的概率密度为fY(y)=,记Z=X+Y. (Ⅰ)求P{Z≤|X=0}; (Ⅱ)求Z的概率密度fZ(z).
admin
2018-07-30
37
问题
设随机变量X与Y相互独立,X的概率分布P{X=i}=
(i=-1,0,1),Y的概率密度为f
Y
(y)=
,记Z=X+Y.
(Ⅰ)求P{Z≤
|X=0};
(Ⅱ)求Z的概率密度f
Z
(z).
选项
答案
(Ⅰ)P{Z≤[*]|X=0}=P{X+Y≤[*]|X=0}=P{0+Y≤[*]|X=0}=P{Y≤[*]} =[*] (Ⅱ)Y的分布函数为: [*] Z的分布函数为 F
Z
(z)=P{Z≤z}=P{X+y≤z}=[*]P{X+Y≤z|X=i}P{X=i} =P{-1+Y≤z|X=-1}.[*]P{0+Y≤z|X=0}.[*]+P{1+Y≤z|X=1}.[*] =[*][P{Y≤z+1}+P{Y≤z}+P(Y≤z-1}]=[*][F
Y
(z+1)+F
Y
(z)+F
Y
(z-1)] [*] 故f
Z
(z)=F′
Z
(z)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/t5g4777K
0
考研数学一
相关试题推荐
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设Y~,求矩阵A可对角化的概率.
设向量场A=2x3yzi—x2y2zj一x2yz2k,则其散度divA在点M(1,1,2)沿方向l={2,2,一1}的方向导数(divA)|M=___________.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
随机试题
高频电疗法对人体组织的穿透深度因波长不同而异,以下哪项不对
L4~5中央型巨大椎间盘突出最可能压迫的神经是
A.结晶紫B.酚酞C.淀粉D.邻二氮菲E.永停滴定法碘量法使用的指示剂是()。
()是指如果期权立即执行,买方具有正的现金流(这里暂不考虑期权费因素)。
强调以人为本的理念,对提升地方政府管理水平有极大的促进意义。过去只强调经济发展速度,政府管理者在作出决策的时候,只注重决策的经济效益,因为经济发展速度是影响个人升迁的关键因素。以人为本的理念则不同,它要求地方政府不仅要考虑经济收益,更要从科学发展观的角度看
一审判决宣判后,原审人民法院发现判决确有错误,而当事人在上诉期间又未上诉的,原审人民法院应当()。
“天然生态基因库”和“绿色生态博物馆”指的是下列的哪一项?()
ModernizationandMoralCultivationWriteanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)d
Estimating schedule activity costs involves developing an(4)of the cost of the resources needed to complete each schedule activi
MoviesMoviesarethemostpopularformofentertainmentformillionsofAmericans.Theygotothemoviestoescapetheirno
最新回复
(
0
)