首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年试题,23)设1707正交矩阵Q使QTTAQ为对角阵,若Q的第一列为.求a,Q.
(2010年试题,23)设1707正交矩阵Q使QTTAQ为对角阵,若Q的第一列为.求a,Q.
admin
2013-12-18
72
问题
(2010年试题,23)设
1707正交矩阵Q使Q
T
TAQ为对角阵,若Q的第一列为
.求a,Q.
选项
答案
因为正交矩阵Q可使得矩阵A.对角化,所以正交矩阵Q的每一列均为矩阵A的特征向量.又正交矩阵Q的第一列为[*]故其为矩阵A的一个特征向量,设对应的特征值为λ
1
,则有[*]由此解得a=一1,λ
1
=2,则A=[*]令[*]则可得(λ+4)(λ一2)(λ一5)=0,即矩阵A的3个特征值为λ
1
=2,λ
2
=5,λ
3
=一4,对应于特征值λ
1
=2的特征向量为[*]由(λ
2
E—A)x=0,即[*]对系数矩阵作行变换得[*],则对应于A2=5的特征向量为ξ
2
=(1,一1,1)
T
.同理,由(λ
3
E—A)x=0,即[*],对系数矩阵作行变换:[*]的特征向量为ξ
3
=(一1,0,1)
T
因为矩阵A为实对称矩阵,且ξ
1
,ξ
2
,ξ
3
,是对应于不同特征值的特征向量,所以ξ
1
,ξ
2
,ξ
3
相互正交,ξ
1
已是单位向量,只需对ξ
2
,ξ
3
单位化即可.[*]取Q=(ξ
1
,η
2
,η
3
)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/t934777K
0
考研数学二
相关试题推荐
设(I)求|A|.(Ⅱ)已知线性方程组Ax=β有无穷多解,求实数。的值,并求Ax=β的通解.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:(Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b](Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
已知矩阵A=,则()
[2010年]设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题中正确的是().
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(93年)设某产品的成本函数为C=aq2+bq+c,需求函数为q=(d-p).其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b.求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;
(05年)当a取下列哪个值时,函数f(χ)=2χ3-9χ2+12χ-a恰有两个不同的零点.【】
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
随机试题
A.麻风病B.狂犬病C.风疹D.鼠疫E.流行性腮腺炎上述各项,属于乙类传染病的是()
会计核算软件主要是替代了手工会计的()等工作。
下列商业银行的理财顾问服务流程的环节中,顺序存“建立投资组合”之后的是()
房地产开发企业计算土地增值税时,所销售的房产对应的下列费用中,准予按照实际发生额从收入总额中扣除的有()。
在签署审计业务约定书前,会计师事务所应当评价自身的专业胜任能力,包括( )。在签署审计业务约定书之前,注册会计师应当对被审计单位的基本情况进行了解,其内容包括( )。
儿歌是以低幼儿童为主要对象的文学作品,试简述儿歌的特点。
3岁孩子拿着画笔认真画画时,不仅是手动,身体的动作、面部的动作也来帮忙。这体现了儿童动作发展的()。
在关系数据库中,用来表示实体间联系的是
Agoodbookmaydrawourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
A、 B、 C、 A叙述将来的事情的陈述句→将来时态的否定回答
最新回复
(
0
)