首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
的一个基础解系为
的一个基础解系为
admin
2019-08-12
58
问题
的一个基础解系为
选项
A、(0,-1,0,2)
T
.
B、(0,-1,0,2)
T
,(0,1/2,0,1)
T
.
C、(1,0,-1,0)T,(-2,0,2,0)
T
.
D、(0,-1,0,2)T,(1,0,-1,0)
T
.
答案
D
解析
用基础解系的条件来衡量4个选项.
先看包含解的个数.
因为n=4,系数矩阵为
其秩为2,所以基础解系应该包含2个解.排除(A).
再看无关性
(C)中的2个向量相关,不是基础解系,也排除.
(B)和(D)都是两个无关的向量,就看它们是不是解了.(0,-1,0,2)
T
在这两个选项里都出现,一定是解.只要看(0,1/2,0,1)
T
或(1,0,-1,0)
T
(其中一个就可以).如检查(1,0,-1,0)
T
是解,说明(D)正确.或者检查出(0,1/2,0,1)
T
不是解,排除(B).
转载请注明原文地址:https://kaotiyun.com/show/tSN4777K
0
考研数学二
相关试题推荐
(13)矩阵相似的充分必要条件为
设A为3阶矩阵,|A|=6,|A+E|=|A-2E|=|A+3E|=0,试判断矩阵(2A)*是否相似于对角矩阵,其中(2A)*是(2A)的伴随矩阵.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
证明方程x=asinx+b(a>0,b>0为常数)至少有一个正根不超过a+b.
设f(χ)在[1,+∞)可导,[χf(χ)]≤-kf(χ>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(χ)<(χ>1).
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设矩阵矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵,试求出矩阵X
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时()
设f(χ)在χ=0的邻域内二阶连续可导,=2,求曲线y=f(χ)在点(0,f(0))处的曲率.
设f(x)=,求f(x)的间断点,并分类.
随机试题
法律责任
Word2010中文版的运行窗口一般由________、标尺、文档编辑区、滚动条、状态栏等组成。
多食易饥,兼见大便溏泻者属
影响固位体固位最重要的因素是
在下列商品中,最可能通过降价的方法来增加总收益的商品是()。
角色过载冲突是指一个人的角色要求太多,工作量太大,不可能完成所有角色所要求的工作时所面临的冲突。根据上述定义,下列属于角色过载冲突的是()。
依据我国《合同法》的规定,限制民事行为能力人签订的其依法不能独立订立的合同,在未经其法定代理人追认之前,该合同的效力为()。
中秋赏月险、单身险、爱情保险……这些_______的保险理念,如今正在互联网的推动下成为_______。这些险种一经推出,就引起广泛热议。填入画横线部分最恰当的一项是:
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,6)>0时,b=φ(a)是极大值;当r(a,b)<
Accordingtothespeaker,whydon’tstudentslikestudyinghistory?
最新回复
(
0
)