首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
admin
2018-08-12
41
问题
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
选项
答案
充分性r(A)<n,AX=0有非零解,将非零解X组成B,则B≠O,且有AB=O. 必要性若AB=O,其中B≠O,设B=[β
1
,β
2
,…,β
s
],则Aβ
i
=0,i=1,2,…,s.其中β
i
,i=1,2,…,s,不全为0,即AX=0有非零解,故r(A)<n.
解析
转载请注明原文地址:https://kaotiyun.com/show/c1j4777K
0
考研数学二
相关试题推荐
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y"-6y’+9y=e3x,则y(x)=_______.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设f(x)二阶可导,f(0)=f(1)=0且证明:存在ξ∈(0,1),使得f"(ξ)≥8.
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为_______.
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=_______,定义域为_______.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
求极限:
设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
随机试题
Nowadays,incominggenerationsreallyrelynowonthepowerofthe"Internet"whenitcomestosearchingforinformation.Justt
治疗阴虚盗汗证的代表方是
要描述某地某年成年女性的体重分布,宜绘制
首选用于治疗乳癌情志郁结证的方剂是
A.主要目标细菌耐药率超过30%的抗菌药物B.主要目标细菌耐药率超过40%的抗菌药物C.主要目标细菌耐药率超过50%的抗菌药物D.主要目标细菌耐药率超过75%的抗菌药物应当参照药敏试验结果选用的是
选择低压厂用变压器高压侧回路熔断器时,下列说法中()是正确的。
E公司2月末有关资料如下:“原材料”总账借方余额180000元,其所属明细账的余额如下: A材料:1200千克,每千克60元,计72000元。B材料:800千克,每千克90元,计72000元。C材料:800千克,每千克45元,计36000元。“应付
在不考虑计提固定资产减值准备的情况下,某项固定资产期满报废时,无论采用年限平均法,还是采用加速折旧法,其累计折旧额一定等于该项固定资产应计提的折旧总额。()
根据《合同法》的规定,约定的违约金低于造成的损失的,当事人可以(
在家电产品“三下乡”活动中,某销售公司的产品受到了农村居民的广泛欢迎。该公司总经理在介绍经验时表示:只有用最流行畅销的明星产品面对农村居民,才能获得他们的青睐。以下哪项如果为真,最能质疑总经理的论述?
最新回复
(
0
)