首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
admin
2017-06-14
53
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
选项
答案
方程组的系数行列式 [*] 当a≠b且a≠(1-n)b时,方程组仅有零解. 当a=b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 x
1
+x
2
+…+x
n
=0, 其基础解系为 α
1
=(-1,1,0,…,0)
T
,α
2
=(-1,0,1,…,0)
T
,α
3
=(-1,0,0,…,1)
T
. 方程组的全部解是 x=c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
为任意常数). 当a=(1-n)b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 [*] 其基础解系为 β=(1,1,…,1)
T
. 方程组的全部解是x=cβ(c为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/tZu4777K
0
考研数学一
相关试题推荐
[*]
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
已知曲线在直角坐标系中由参数方程给出:x=t+e-1,y=2t+e-2t(t≥0).求y=y(x)的渐近线.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
________是指应用于桌面的图像和颜色,它处于桌面的最底层,没有实质性的作用,主要用于装饰桌面。
我国稻田型钩体病的主要传染源是
小敏,女,3岁,误服火鼠药物(磷化锌)后,被送至医院抢救,护士立即实施抢救工作。
患者,女,40岁,其家属叙述该患者近两年来逐渐少语少动,不与人交往,孤僻离群,对亲友冷淡,不讲究个人卫生,有时发呆。此患者最可能的诊断是
依据中国产业结构的总体分类,房地产业属于()。
A、e2B、e2一1C、D、D故选D。
根据行政法理论及相关法律规定,关于行政机关和行政机构的设立,下列说法不正确的有()。
我国对法律溯及力问题实行的原则是()。
简述启发式教学原则及其在教学中的基本要求。
ScreenTest1.EveryyearmillionsofwomenarescreenedwithX-raystopickupsignsofbreastcancer.Ifthishappensearlyen
最新回复
(
0
)