首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A=E+χyT,χ与y都是n×1矩阵,且yTχ=2,求A的特征值、特征向量.
设A是n阶矩阵,A=E+χyT,χ与y都是n×1矩阵,且yTχ=2,求A的特征值、特征向量.
admin
2020-03-05
31
问题
设A是n阶矩阵,A=E+χy
T
,χ与y都是n×1矩阵,且y
T
χ=2,求A的特征值、特征向量.
选项
答案
令B=χy
T
=[*](y
1
,y
2
,…,y
n
),则B
2
=(χy
T
)(χy
T
)=χ(y
T
χ)y
T
=2χy
T
=2B,可见B的特征值只能是0或2. 因为[*] 则r(B)=1,故齐次方程组Bχ=0的基础解系由n-1个向量组成,且基础解系是:α
1
=(-y
2
,y
1
,0,…,0)
T
,α
2
==(-y
3
,0,y
1
,…,0)
T
,…,α
n-1
=(-y
n
,0,0,…,y
1
)
T
.这正是B的关于λ=0也是A关于λ=1的n-1个线性无关的特征向量. 由于B
2
=2B,对B按列分块,记B=(β
1
,β
2
,…,β
n
),则B(β
1
,β
2
,…,β
n
)=2(β
1
,β
2
,…,β
n
),即Bβ
i
=2β
i
,可见α=(χ
1
,χ
2
,…χ
n
)
T
是B关于λ=2,也就是A关于λ=3的特征向量. 那么A的特征值是1(n-1重根)和3,特征向量分别是 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,k
n
α
n
,其中k
1
,k
2
,…,k
n-1
不全为0,k
n
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/tcS4777K
0
考研数学一
相关试题推荐
设相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:则随机变量Z=max{X,Y)的分布律为___________.
函数f(x,y)=x2y3在点(2,1)沿方向l=i+j的方向导数为
设f(x)在[a,b]上连续,且g(x)>0,证明:存在一点ξ∈a,6],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
令aTβ=k,则A2=kA,设AX=λX,则A2X=λ2X=kλX,即λ(λ-k)X=0,因为X≠0,所以矩阵A的特征值为λ=0或λ=k.由λ1+…+λn=tr(A)且tr(A)=k得λ1=…=λn-1=0,λn=k.因为r(A)=1,所以方程组(
某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时,超过的部分打九折出售,试将销售总收益与总销售量的函数关系用数学表达式表出.
交换累次积分的积分顺序:I=∫01dx∫01—xdy∫0x+yf(x,y,z)dz,改换成先x最后y的顺序.
求直线L1:与直线L2:的夹角.
[2003年]设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
求一个二次多项式f(x),使得f(1)=0,f(2)=3,f(﹣3)=28.
随机试题
凡是有关经济社会发展和人民群众切身利益的事项,都要进行合法性、合理性、可行性和可控性评估。()
某县检察机关以抢夺罪对被告人柳桌提起公诉。县人民法院经过审理判处柳某有期徒刑3年。宣判后,柳某表示悔罪服判,决不上诉,出庭支持公诉的检察人员也表示法院判决结果合理合法,检察机关不会抗诉。问题:(1)就本案而言,法院是否可以在宣判后就将柳某送交监狱服刑,为什
依据《建设工程安全生产管理条例》规定,下列关于设计单位的安全责任不正确的是( )。
施工图预算的审查方法包括()。
基金信息披露的及时性原则要求以最快的速度公开信息,在重大事件发生之日起()日内披露临时报告。
在()中,使用当前及历史价格对未来进行预测将是徒劳的。
A公司现销方式每年可销售产品800000件,单价1元,变动成本率为70%,固定成本为120000元,该公司尚有30%的剩余生产能力。为了扩大销售,该公司拟改用赊销政策,信用政策准备调整为“3/0,2/30,N/60”。有关部门预测,年销售量可增至10000
资本资产定价模型的目的是()。
《蒙娜丽莎》《最后的晚餐》是画家()的著名绘画作品。
下图所示的数据模型属于
最新回复
(
0
)