首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)是连续函数f(x)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有( )
设F(x)是连续函数f(x)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有( )
admin
2018-04-14
96
问题
设F(x)是连续函数f(x)的一个原函数,“M
N”表示“M的充分必要条件是N”,则必有( )
选项
A、F(x)是偶函数
f(x)是奇函数。
B、F(x)是奇函数
f(x)是偶函数。
C、F(x)是周期函数
f(x)是周期函数。
D、F(x)是单调函数
f(x)是单调函数。
答案
A
解析
方法一:f(x)的原函数可以表示为F(x)=∫
0
x
f(t)dt+C。如果F(x)为偶函数,则F(-x)=F(x),等式两边同时求导可得-f(-x)=f(x),可知f(x)为奇函数。
如果f(x)为奇函数,F(-x)=∫
0
-x
f(t)dt+C,对其作变量代换,令u=-t可得
F(-x)=∫
0
x
f(-u)(-du)+C=∫
0
x
-f(u)(-du)+C=∫
0
x
f(u)du+C=F(x),
可知F(x)为偶函数。
综上所述,选项A是正确的。
方法二:举反例排除。令f(x)=x
2
,F(x)=
x
3
+1,可知f(x)为偶函数时,F(x)不一定为奇函数;令f(x)=cosx+1,F(x)=sinx+x,可知f(x)为周期函数时,F(x)不一定为周期函数;令f(x)=x,F(x)=1/2x
2
,可知f(x)为单调函数时,F(x)不一定为单调函数。由此只有选项A是正确的。
转载请注明原文地址:https://kaotiyun.com/show/u3k4777K
0
考研数学二
相关试题推荐
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
[*]
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ﹙C﹚=0.
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)x=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
(I)设f(x),g(x)在(a,b)可微,g(x)≠0,设f(x)在(一∞,+∞)二阶可导,且f(x)≤0,f’’(x)≥0(x∈(一∞,+∞)).求证:f(x)为常数(x∈(一∞,+∞)).
设f(x)=,求f(x)的间断点并判断其类型.
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
随机试题
阿托品不具有的作用是()
以下操作违反无菌原则的是
小儿5岁,健康体检。父母咨询科学育儿知识,关心儿童的营养与热能供给问题。若小儿输液治疗拔针时,针孔出血不宜停止,可能缺乏的营养素是
A、酯苷B、醇苷C、C-苷D、S-苷E、N-苷可同时被酸和碱水解的是
已知某新技术应用方案的投资额为80万元,年工程成本为18万元,基准收益率为20%,则此方案的折算费用为()万元。
《关于惩治骗购外汇、逃汇和非法买卖外汇犯罪的决定》属于()。
材料1乡村医生,又被称为“赤脚医生”,诞生于20世纪50年代。当时农村卫生条件极其恶劣,各种疾病肆意流行,在严重缺少药品的情况下,政府部门提出把卫生工作的重点放到农村,培养和造就了一大批赤脚医生。他们半农半医,一根针、一把草治病,曾和农村三级卫
犹太人又称【1】人和以色列人,其语言汉语名之曰【2】语。犹太民族创立了并一直信奉犹太教。有史料证明,犹太人和犹太教最晚于公元12世纪已经来到中国,中国人说犹太人“名其教为一赐乐业教”,当时的音译“一赐乐业”就是后来和现在的【3】,此音译还兼有“天帝赐予安居
NetWare文件系统通过什么结构来组织文件?
Theroadhastobe(wide)______sothattheproblemsoftrafficjamcanbesolved.
最新回复
(
0
)