首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
admin
2019-02-26
41
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,
试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
选项
答案
作辅助函数F(x)=f(x)+kx,则F(x)在[0,1]上连续,在(0,1)内可导,且F’(x)=f’(x)+k. 由f(0)=f(1)一1,[*]F(1)= 1+k,所以,[*]<F(0)<F(1). 由介值定理,存在点c∈[*]使得F(c)=F(0).因此,F(x)在[0,c]上连续,在(0,c)内可导,且F(0)=F(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得F’(ξ)=f’(ξ)+k=0,即f’(ξ)=一k.
解析
这是讨论函数在某点取定值的问题,可转化为导函数的存在性问题.
f’(ξ)=一k<=>f’(ξ)+k=0
<=>[f(x)+kx]’|
x=ξ
=0
<=>F(x)= f(x)+kx的导数在(0,1)内有零点.
于是,我们只要验证F(x)在[0,1]上或其子区间上满足洛尔定理的全部条件.
在本题的证明过程中综合运用了辅助函数法和辅助区间法,构造辅助函数的方法是:将待证的结论变形为f’(ξ)+k=0,即函数F(x)=f(x)+kx的导函数在(0,1)内存在零点的形式.然后取该函数作为用洛尔定理证明本题的辅助函数.由于F(x)在区间[0,1]的端点的值不相等,再由已知条件和介值定理构造使F(x)在端点值相等的辅助区间[0,c],c∈
然后应用洛尔定理得到要证明的结论.
转载请注明原文地址:https://kaotiyun.com/show/uU04777K
0
考研数学一
相关试题推荐
设随机变量X的概率分布为P{X=k}=,k=0,1,2,…,则常数a=
A、 B、 C、 D、 D
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
已知随机变量(X,Y)在区域D={(x,y)|-1<x<1,-1<y<1}上服从均匀分布,则()
设A是任一n阶矩阵,下列交换错误的是
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2-α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3.则r(β1,β2,β3,β4,β5)=()
已知α1=(1,2,1,1,1)T,α2=(1,-1,1,0,1)T,α3=(2,1,2,1,2)T是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
求柱面x2+y2=ax含于球面x2+y2+z2=a2内的曲面面积S,其中a>0为常数.
计算+(x2y—z3)dzdx+(2xy+y2z)dxdy,其中∑为半球面的内侧.
设100件产品中有10件不合格,现从中任取5件进行检验,如果其中没有不合格产品,则这批产品被接受,否则被拒绝.求:在任取5件产品中不合格产品件数X的数学期望和方差;
随机试题
妊娠剧吐与哪种激素急剧上升有关()
癌细胞闭中有较多癌珠存在,可诊断( )。
粉末中可见草酸钙针晶、簇晶和方晶药材为
强心苷产生正性肌力作用的机制
对工作进行周密的、有目的的计划安排过程是()。
各种账务处理程序的共同特点有()。
工人秦某是一位区政协委员,他花费大量时间走访调查,写出了《关注个体经济,建议停止工商非法收费》的调研报告,并将报告递交给全国人大代表。之后,以这份报告为基础形成的全国人大代表议案建议,得到了国务院的采纳:从当年9月1日起,全国统一停止征收个体工商户管理费和
设y=f(x)在[1,3]上单调,导函数连续,反函数为x=g(y),且f(1)=1,f(3)=2,,则=_______·
Artificialintelligenceisbecominggoodatmany"human"jobs—【C1】______disease,translatinglanguages,providingcustomerservi
以下关于函数过程的叙述中,正确的是
最新回复
(
0
)