首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
已知线性方程组 的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组 的通解,并说明理由。
admin
2018-04-08
50
问题
已知线性方程组
的一个基础解系为(b
11
,b
21
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
,试写出线性方程组
的通解,并说明理由。
选项
答案
可记方程组(Ⅰ)A
n×2n
=0,(Ⅱ)B
n×2n
y=0,B
T
的列是(Ⅰ)的基础解系,(Ⅰ),(Ⅱ)的系数矩阵分别记为A,B,由于B的每一行都是A
n×2n
x=0的解,故AB
T
=O。故由基础解系的定义知,B
T
的列向量是线性无关的,因此r(B)=n。从而线性方程组(Ⅱ)的基础解系中含有2n-r(B)=2n-r=n个向量。 对AB
T
=O两边取转置,有(AB
T
)
T
=BA
T
=O,则有A
T
的列向量,即A的行向量是By=0的解。 由于线性方程组(Ⅰ)的基础解系中含有n个向量,可知n=2n-r(A),得r(A)=2n-n=n。因 此,A的行向量线性无关。从而A
T
的列向量是By=0的n个线性无关的解,也即A
T
的列向量是By=0的基础解系。 综上所述,线性方程组(Ⅱ)的通解为k
1
ξ
1
+k
2
ξ
2
+…+k
n
ξ
n
其中, ξ
1
=(a
11
,a
21
,…,a
1,2n
)
T
,ξ
2
=(a
21
,a
22
,…,a
2,2n
)
T
,…,ξ
n
=(a
n1
,a
n2
,…,a
n,2n
)
T
,且k
1
,k
2
,…,k
n
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ulr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
已知α1,α2……αs线性无关,β可由α1,α2……αs线性表出,且表示式的系数全不为零.证明:α1,α2……αs,β中任意s个向量线性无关.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
求方程的通解.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
随机试题
国际法的基本特点。
叩诊确定肝上界时体表标志是
既是抗原呈递细胞,又是免疫应答细胞的是可以杀伤肿瘤细胞无需MHC限制性的是
投资项目社会评价中韵互适性分析主要是考察项目与当地社会环境的相互适应关系,互适性分析内容包括()
人们常说“一寸光阴一寸金,寸金难买寸光阴”,这说明了()。
已知直线l的斜率为1/6,且和两坐标轴围成面积为3的三角形,则l的方程为().
1919年5月爆发的五四运动具备了哪些新的历史特点,使之成为中国革命的新阶段即成为新民主主义革命阶段的开端的()
Withunfamiliarhumanbeings,whenweacknowledgetheirhumanness,wemustavoidstaringatthem,andyetwemustalsoavoidign
Accordingtothelecture,whatis"bartering"?
Thefunnythingabouthowabankworksisthatitfunctionsbecauseofourtrust.Wegiveabankourmoneytokeepitsafeforu
最新回复
(
0
)