首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,19)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(n)f(b)=g(b),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
(2007年试题,19)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(n)f(b)=g(b),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
admin
2013-12-27
52
问题
(2007年试题,19)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(n)f(b)=g(b),证明:存在ξ∈(a,b),使得f
’’
(ξ)=g
’’
(ξ).
选项
答案
设f(x),g(x)在(a,b)内某点η∈(a,b)同时取得最大值,则f(η)=g(η).若两个函数取得最大值的点不同,则可设fC=maxf(x).g(d)=maxg(x),故有fC一g>0,f(d)一g(d)<0,由介值定理,在(c,d)内(或(d,c)内)肯定存在η使得f(η)=g(η).由罗尔定理在区间(a,η),(η,b)内分别存在一点ξ
1
,ξ
2
使得,f
’
(ξ
1
)=g
’
(ξ
1
),f
’
(ξ
2
)=g
’
(ξ
2
).在区间(ξ
1
,ξ
2
)内再用罗尔定理,即存在ξ∈(ξ
1
,ξ
2
)c(a,b),使得f
’’
(ξ)=g,(ξ). 解析二利用以下两个已知的结论:(1)设h(x)在(a,b)可导,若h
’
(x)在(a,b)恒不为零,则h
’
(x)>0(x∈(a,b))h
’
(x)<0(x∈(a,b)).(2)设h(x)在[a,b]连续,在(a,b)可导,若h(a)=h(b)=0,h(x)在[a,b]为凸(凹)函数,则h(x)>0(或<0)(x∈(a,b)).同前,由题设[*]x
1
∈(a,b),M=[*]f(x)=f(x
1
),[*]x
2
∈(a,b),M=[*]g(x)=g(x
2
).令F(x)=f(x)一g(x).现用反证法.若结论不对,则F
’’
(x)>0或F
’’
(x)<0(x∈(a,b)).(1)若F
’’
(x)>0(x∈(a,b)→F(x)在[a,b]为凹函数,又F(a)=F(b)=0→(x)<0(x∈(a,b)),但F(x。)=f(x)一g(x。)≥0,矛盾.(2)若F
’’
(x)<0(x∈(a,6)→F(x)在[a,b]为凸函数,又F(a)=F(b)→0→F(x)>0(x∈(a,b))但F(x
2
)=f(x
2
)一g(x
2
)≥0,矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/v354777K
0
考研数学一
相关试题推荐
设A=,求一个可逆矩阵P,使PA为行最简形矩阵.
设向量组A:a1,a2;向量组B:a1,a2,a3;向量组C:a1,a2,a4的秩RA=RB=2,RC=3,求向量组D:a1,a2,2a3—3a4的秩.
求下列可降阶的高阶微分方程的通解.x2y“=(y‘)2+2xy‘;
求下列不定积分:
设A,B为n阶矩阵,且A,B等价,则下列结论正确的是().
设a1>1,又an+1=1+1na.(Ⅰ)证明:方程x=1+1nx有唯一解,并求其解;(Ⅱ)存在,并求此极限.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
(2005年试题,一)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C上,有
随机试题
关于早期食管癌的叙述,下列哪项是错误的
细粒棘球蚴多寄生于家畜和人的()。[2010年真题]
电动卷扬机的卷扬能力一般为( )t。
下列暂停施工增加的费用和(或)工期延误由承包人承担的有()。
长距离输电线路钢塔架(铁塔)基础施工测量采用钢尺量距时,其丈量长度不宜大于()m,同时不宜小于20m。
女性,45岁。反复发作性头痛、心悸、恶心3年,发作时面色苍白,血压升高,最高时240/135mmHg,平时血压正常。该患者最可能的诊断是
构建教学策略应遵循的理论思路是:在实践活动的基础上通过交往促进()。
ThenovelRobinsonCrusoewaswrittenby().
Whydoesthemanwantanewjob?
Whereprobablyarethetwospeakers?
最新回复
(
0
)