首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布。记 (Ⅰ)求U和V的联合分布; (Ⅱ)求U和V的相关系数r。
(1999年)假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布。记 (Ⅰ)求U和V的联合分布; (Ⅱ)求U和V的相关系数r。
admin
2021-01-25
80
问题
(1999年)假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布。记
(Ⅰ)求U和V的联合分布;
(Ⅱ)求U和V的相关系数r。
选项
答案
(Ⅰ)由题知U和V均服从0-1分布, P{U=0}=P{X≤Y},P{U=1}=P{X>Y}, P{V=0}=P{X≤2Y},P{V=1}=P{X>2Y}。 二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布(根据二维均匀分布的性质,各部分所占的概率是其面积与总面积之比)。 所以,如图所示。 [*] P{X≤Y}=S
D
1
/S
总
=[*] P{X>2Y}=S
D
3
/S
总
=[*] P{Y<X≤2Y}=1-P{X≤Y)-P{X>2Y}=[*] (U,V)有四个可能值:(0,0),(0,1),(1,0),(1,1)。 P{U=0,V=0}=P{X≤Y,X≤2Y}=P{X≤Y}=[*] P{U=0,V=1}=P{X≤Y,X>2Y)=[*]=0, P{U=1,V=0)=P{X>Y,X≤2Y}=P{Y<X≤2Y}=[*] P{U=1,V=1)=P{X>Y,X>2Y)=P{X>2Y}=[*] 因此可得U和V的联合分布为 [*] (Ⅱ)由第(Ⅰ)问可得U和V的分布律分别为 [*] P{UV=0}=P{U=0,V=0}+P{U=1,V=0)+P{U=0,V=1} [*] 因此可得UV的分布律为 [*] 所以 D(U)=E(U
2
)-EE(U)]
2
=[*] D(V=E(V
2
)-[E(V)]
2
=[*] 故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/v5x4777K
0
考研数学三
相关试题推荐
,αTβ=aibi≠0,求A的全部特征值,并证明A可以对角化.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
甲袋中有4个白球和6个黑球,乙袋中有5个白球和5个黑球,今从甲袋中任取2个球,从乙袋中任取一个球放在一起,再从这3个球中任取一球,求最后取到白球的概率.
[2005年]设二维随机变量(X,Y)的概率密度为求P(Y≤1/2|X≤1/2).
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求(X,Y)的概率分布;
[2013年]设(X,Y)是二维随机变量,X的边缘概率密度为在给定X=x(0<x<1)的条件下,Y的条件概率密度为求P(X>2y).
(2010年)设二维随机变量(X,Y)的概率密度为f(x,y)=Ae-2x2+2xy-y2,-∞<x<+∞,-∞<y<+∞,求常数A及条件概率密度fY|X(y|x)。
若数列(an+a2)+(a3+a4)+…+(a2n—1+a2n)+…发散,则级数an_________。
设函数y=y(x)由参数方程确定,则曲线y=y(x)向上凸的x取值范围为______.
设随机事件A与B互不相容,且A=B,则P(A)=______.
随机试题
深Ⅱ度烧伤局部损伤的深度是
男孩,3岁,常有排尿中断现象,并伴有疼痛,患儿常用手搓拉阴茎,改变体位后,能够恢复排尿。结石的主要成分最可能的是
某施工单位,在工程建设过程中野蛮施工、违章作业、致使军事通信光缆被挖断,造成重大损失,对此行为应当如何处理?( )
你和领导一起到某地开展调查,你因堵车迟到了,领导和其他部门同志非常生气,你怎么办?
取缔非法校车的初衷是为了保障学生的生命安全,但我们也应当注意到.如果没有得力的配套措施,单纯采用这种取缔手段并不一定能够降低事故率:非法校车取缔之后,风险变得分散了,媒体也不会集中报道了,但并不意味着上下学的安全隐患消失,在没有正规校车的情况下,离家较远的
设aibi≠0(i=1,2,…,n),则矩阵的秩为_______.
下列哪一(些)项属于询问一应答式协议 Ⅰ.私钥密码技术 Ⅱ.公钥密码技术
假定有以下循环结构DoUrntil条件循环体Loop则正确的描述是()。
对于循环队列,下列叙述中正确的是()。
CellPhoneLetsYourSecretsOutYourcellphoneholdssecretsaboutyou.Besidesthenamesandnumbersthatyou’veprogram
最新回复
(
0
)