首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
admin
2021-08-05
95
问题
设函数y=f(x)满足方程y”+2y’+y=3xe
—x
及条件y(0)=
,y’(0)=一2,求广义积分∫
0
+∞
f(x)dx.
选项
答案
方法一 对应齐次方程的特征方程r
2
+2r+1=0有二重特征根r=一1,则对应齐次方程的通解为 Y=(C
1
+C
2
x)e
—x
. 原方程的自由项3xe
—x
,λ=r=一1是特征方程的二重根,故应设特解为y
*
=x
2
(ax+b)e
—x
. 代入原方程,解得a=1/2,b=0,则y
*
=[*]x
3
e
—x
.因此,方程的通解为 f(x)=Y+y
*
=(C
1
+C
2
)e
—x
+[*]x
3
e
—x
. 再由y(0)=1/3,y’(0)=一2解得C
1
=1/3,C
2
=—5/3,所以f(x)=[*].最后,利用分部积分,得 [*] 方法二 本题具有特殊性.只需确定通解f(x)的一般形式,不必计算其中的各个参数即可求出广义积分∫
0
+∞
f(x)dx的值.这是因为,根据所给方程可设 f(x)=(C
1
+C
2
x)e
—x
+x
2
(ax+b)e
—x
=(C
1
+C
2
x+bx
2
+ax
3
)e
—x
, 易知[*]所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vPy4777K
0
考研数学二
相关试题推荐
设f(χ)=χ3+aχ2+bχ在χ=1处有极小值-2,则().
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αs,β)=
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
曲线的渐近线有()
周期函数f(x)在(一∞,+∞)内可导,周期为4,又=一1,则y=f(x)在点(5,f(5))处的切线斜率为()
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
若由曲线,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f’’(ξ)<0.
设是微分方程的解,则的表达式为()
设矩阵A=,且∣A∣=一l,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T.求a,b,c和λ0的值.
随机试题
黏弹补充疗法应用1%透明质酸钠做关节腔内注射,对改善颞下颌关节紊乱病有所帮助的类型是
受理申请医师注册的卫生行政部门对不符合条件不予注册的,应当自收到申请之日起多少日内给予申请人书面答复,并说明理由()
根据评价对象的不同,土地分等定级可分为()分等定级类型。
建设方案研究与比选中,采用高新技术需要符合的要求有()
设备制造实施过程质量监理的重点是()。
深圳市盛润公司主管财务会计工作的副总经理王某召集财务部部长李某及相关人员开会,重点研究年度财务决算的相关事宜,同时财务部汇报几项工作,由领导决定。以下是会议期间的部分发言:王某:受金融危机的影响,公司今年的内销及外销均大幅度下滑,亏损已成定局。财务部正在
对误机(车、船)事故的处理,应做到()
读图,图中L为晨昏线。完成问题。若此时雅加达正午物体影子朝北,则()。
Wecanlearnfromthetextthathumanbeingshaveahistoryof______.VideogameswouldhavebeenrecommendedbySocratesdue
设顺序表的长度为n。下列算法中,最坏情况下比较次数等于n(n-1)/2的是()
最新回复
(
0
)