首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
计算三重积分I=(χ+y+z)2dV,其中 (Ⅰ)Ω{(χ,y,z)|χ2+y2+z2≤4,z≥}; (Ⅱ)Ω{(χ,y,z)|χ2+y2+z2≤4,χ2+y2+z2≤4z}.
计算三重积分I=(χ+y+z)2dV,其中 (Ⅰ)Ω{(χ,y,z)|χ2+y2+z2≤4,z≥}; (Ⅱ)Ω{(χ,y,z)|χ2+y2+z2≤4,χ2+y2+z2≤4z}.
admin
2018-06-12
53
问题
计算三重积分I=
(χ+y+z)
2
dV,其中
(Ⅰ)Ω{(χ,y,z)|χ
2
+y
2
+z
2
≤4,z≥
};
(Ⅱ)Ω{(χ,y,z)|χ
2
+y
2
+z
2
≤4,χ
2
+y
2
+z
2
≤4z}.
选项
答案
这二个区域Ω的共同点是,它们关于yz平面与zχ平面均对称,当被积函数对χ或对y是奇函数时,则在Ω上的三重积分值为零.于是 I=[*](χ
2
+y
2
+z
2
)aV+2[*](χy+yz+zχ)dV=[*](χ
2
+y
2
+z
2
)dV. 下面分别就上述两种区域Ω求积分值I. (Ⅰ)Ω由上半球面[*]=2及锥面z=[*]围成.如图24—6(a)所示.它们的交线是: [*] 作球坐标变换,则Ω的球坐标表示为:0≤ρ≤2,0≤φ≤[*],0≤θ≤2π.于是 [*] (Ⅱ)Ω是两个球体χ
2
+y
2
+z
2
≤4与χ
2
+y
2
+z
2
≤4z(χ
2
+y
2
+(z-2)
2
≤4)的公共部分,两球面的交线是 [*] 图24—6(b)是Ω在yz平面上的截面图.作球坐标变换,并用锥面z=[*]将Ω分成Ω=Ω
1
=Ω
2
.其中 Ω
1
={(χ,y,z)|χ
2
+y
2
+z
2
≤4,z≥[*]}, Ω
2
={(χ,y,z)|χ
2
+y
2
+z
2
≤4z,z≤[*]}. 用球坐标表示: Ω
1
:0≤ρ≤2,0≤φ≤[*],0≤θ≤2π, Ω
2
:0≤ρ≤4cosφ,[*],0≤θ≤2π. 这里球面χ
2
+y
2
+z
2
=4z的球坐标方程是:ρ=4cosφ.因此 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vTg4777K
0
考研数学一
相关试题推荐
向量组α1=(1,3,5,-1)T,α2=(2,-1,-3,4)T,α3=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
函数u=在点M0(1,1,1)处沿曲面2z=χ2+y2在点M0处外法线方向n的方向导数=________.
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
已知四元齐次方程组(Ⅰ),的解都满足方程式(Ⅱ)χ1+χ2+χ3=0.①求a的值.②求方程组(Ⅰ)的通解.
有两名选手比赛射击,轮流对同一个目标进行射击,甲命中目标的概率为α,乙命中目标的概率为β甲先射,谁先命中谁得胜.问甲、乙两人获胜的概率各为多少?
设事件A,B满足AB=,则下列结论中一定正确的是()
曲面上任意一点处的切平面在三个坐标轴上的截距之和为()
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=一,用切比雪夫不等式估计P{|X+Y一3|≥10}.
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率P.
设f(x),φ(x)在点x=0的某邻域内连续,且x→0时,f(x)是φ(x)的高阶无穷小,则x→0时,∫0xf(t)sintdt是∫0xtφ(t)dt的()无穷小.
随机试题
A.散发性发病B.小流行C.流行D.大流行E.暴发流行传染病病例发病时间的分布高峰集中于一个短时间之内者称为()
初孕妇,34周孕,既往有再生障碍性贫血病史,现血红蛋白为50g/L,血小板45×109/L,应采取的措施是
碳酸氢钠溶液煮沸灭菌时,其煮沸时间一般为
患者已确诊为骨巨细胞瘤,局部皮肤表浅静脉怒张,肿胀与压痛均显著,触诊有乒乓球样感觉。X片:骨皮质已破坏,断裂。病理报告:骨巨细胞瘤Ⅲ级。治疗应选择()
下列选项中,不属于合理经济规模衡量指标的是()。
砖基础墙的防潮层位置宜在室内地面标高()处。
税务机关欠税清缴制度包括()。
ItisonOctober1,2009thatthePeoplesRepublicofChina_______its60thbirthday.
公文如有附件,按顺序应当注明附件的()。
简述乔姆斯基的转换生成语法理论。
最新回复
(
0
)