首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
admin
2016-05-09
30
问题
设a
1
,a
2
线性无关,a
1
+b,a
2
+b线性相关,求向量b用a
1
,a
2
线性表示的表达式.
选项
答案
因为a
1
+b,a
2
+b线性相关,故存在不全为零的常数k
1
,k
2
使 k
1
(a
1
+b)+k
2
(a
2
+b)=0,则有(k
1
+k
2
)b=-k
1
a
1
-k
2
a
2
. 又因为a
1
,a
2
线性无关,若 k
1
a
1
+k
2
a
2
=0,则k
1
=k
2
=0. 这与k
1
,k
2
不全为零矛盾,于是有 k
1
a
1
+k
2
a
2
≠0,(k
1
+k
2
)b≠0. 由a
1
,a
2
线性无关,a
1
+b,a
2
+b线性相关,因此b≠0. 综上k
1
+k
2
≠0,因此由(k
1
+k
2
)b=-ka
1
-k
2
a
2
b=[*],k
1
,k
2
∈R,k
1
+k
2
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vgw4777K
0
考研数学一
相关试题推荐
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B若AX=B,求X
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
向量组a1,a2…,as线性无关的充要条件是().
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1)及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
患者,男性,20岁。饱餐后剧烈运动时突然出现中腹部剧烈绞痛,伴恶心呕吐,无排气排便,查体:腹膨胀,未见肠型,脐周有明显压痛、反跳痛、肌紧张,肠鸣音消失。腹部X线平片显示腹中部有数个气-液平面。最可能的诊断为
西洋参含量测定的成分为( )。
制冷空调自动控制系统中应用最多的一种执行器是()。
实物黄金投资通常不包括( )。
胡锦涛指出,在当代中国,坚持发展是硬道理的本质要求就是()
1945年,毛泽东在《论联合政府》中这样总结,“我们的党从它一开始,就是一个以马克思列宁主义的理论为基础的党,这是因为这个主义是全世界无产阶级的最正确最革命的科学思想的结晶”,以马克思列宁主义的理论思想武装起来的中国共产党具备了三大优良作风,这主要的就是
在窗体上画两个文本框(名称分别为Text1和Text2)和一个命令按钮(名称为Command1),然后编写如下事件过程:PrivateSubCommand1_Click()x=0DoWhilex
将一个PowerPoint演示文稿保存为放映文件,最优的操作方法是
BillGates,thebillionaireMicrosoftchairmanwithoutasingleearneduniversitydegree,isbyhissuccessraisingnewdoubtsa
Whatisthemaintopicofthistalk?
最新回复
(
0
)