首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(93年)设二次型f=χ12+χ22+χ32+2αχ1χ2+2βχ2χ3+2χ1χ3经正交交换X=PY化成f=y22+2y32,其中X=(χ1,χ2,χ3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
(93年)设二次型f=χ12+χ22+χ32+2αχ1χ2+2βχ2χ3+2χ1χ3经正交交换X=PY化成f=y22+2y32,其中X=(χ1,χ2,χ3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
admin
2017-05-26
74
问题
(93年)设二次型f=χ
1
2
+χ
2
2
+χ
3
2
+2αχ
1
χ
2
+2βχ
2
χ
3
+2χ
1
χ
3
经正交交换X=PY化成f=y
2
2
+2y
3
2
,其中X=(χ
1
,χ
2
,χ
3
)
T
和Y=(y
1
,y
2
,y
3
)
T
是3维列向量,P是3阶正交矩阵,试求常数α,β.
选项
答案
变换前后二次型的矩阵分别为 [*] 由题设条件有 P
-1
AP=P
T
AP=B 因此 |λE-A|=|λE-B| 即[*] 得λ
3
-3λ
2
+(2-α
2
-β
2
)λ+(α-β)
2
=λ
3
-3λ
2
+2λ 解得α=β=0为所求常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/vtH4777K
0
考研数学三
相关试题推荐
向量场u(x,y,z)=xy2i+yexj+xIn(1+z2)k在点P(1,1,0)处的散度divu=_____.
设α为常数,则级数().
设A,B皆为n阶矩阵,则下列结论正确的是().
向量组a1,a2,…,as线性无关的充分条件是().
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
随机试题
新型城镇化是现代化的必由之路,是最大的内需潜力所在,是经济发展的重要动力,也是一项重要的民生工程。要坚持走中国特色新型城镇化道路,以()为核心,以()为关键,以()为动力,紧紧围绕()目标任务,加快推进户籍制度改革,
以下对于状态监测型防火墙的描述中,错误的是()。
与一般的感知活动相比,审美感知具有一系列自身的特点。
“少仲尼之闻而轻伯夷之义”出自于()
有关滴眼剂错误的叙述是
女,40岁。活动后心悸、气短5年,夜间不能平卧2周。既往有反复关节痛病史。查体:两颊呈紫色,心尖部可闻及舒张期杂音。最有助于确诊的检查是
在我国,最常见的细菌性痢疾的病原菌是
不成文宪法的特点及构成。
“自然灾害”是人类依赖的自然界所发生的异常现象,自然灾害对人类社会所造成的危害往往是触目惊心的。它们之中既有地震、火山爆发、泥石流、海啸、台风、洪水等突发性灾害;也有地面沉降、土地沙漠化、干旱、海岸线变化等在较长时间中才能逐渐显现的渐变性灾害;还有臭氧层变
关于电子邮件,下列说法错误的是()。
最新回复
(
0
)