首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
admin
2019-08-11
66
问题
若二阶常系数齐次线性微分方程y
’’
+by
’
+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y
’’
+ay
’
+by=x满足条件y(0)=2,y
’
(0)=0的特解为y=_________。
选项
答案
x(1一e
x
)+2
解析
由常系数齐次线性微分方程y
’’
+ay
’
+by=0的通解为y=(C
1
+C
2
x)e
x
可知y
1
=e
x
,
y
2
=xe
x
为其两个线性无关的解,代入齐次方程,有
y
1
’’
+ay
1
’
+by
1
=(1+a+b)e
x
=0
1+a+b=0,
y
2
’’
+ay
2
’
+by
2
=[2+a+(1+a+b)x]e
x
=0
2+a=0,
从而a=一2,b=1,故非齐次微分方程为y
’’
+ay
’
+by=x。
设特解y
*
=Ax+B,代入非齐次微分方程,得一2A+Ax+B=x,即
所以特解为y
*
=x+2,非齐次方程的通解为y=(C
1
+C
2
x)e
x
+x+2。
把y(0)=2,y
’
(0)=0代入通解,得C
1
=0,C
2
=一1。故所求特解为
y=一xe
x
+x+2=x(1一e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/vxN4777K
0
考研数学二
相关试题推荐
设求f(x)在点x=0处的导数.
设y=f(x)可导,且y’≠0.若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式.
设y=(1+x2)arctanx,求y’.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:r(A-aE)+r(A-bE)=n.
设y=ln(1+x2),则y(5)(0)=________.
若函数f(x)在x=1处的导数存在,则极限=_______.
要设计一形状为旋转体水泥桥墩,桥墩高为h,上底面直径为2a,要求桥墩在任意水平截面上所受上部桥墩的平均压强为常数ρ.设水泥的比重为ρ,试求桥墩的形状.
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3.当A满足什么条件时f(x1,x2,x3)正定?
若行列式的第j列的每个元素都加1,则行列式的值增加Aij.
随机试题
DNA序列测定的应用有
太乙针灸常用于治疗
易造成骨折不愈合的原因是
男性,60岁。2小时前与人争吵后突发头痛,吐咖啡色液体。查体:BP190/120mmHg,深昏迷,双侧瞳孔小,四肢瘫、颈有阻力。四肢有阵发性强直出现,诊断为高血压性脑出血。出血部位可能为
被他汀类药物抑制的酶的作用底物是
(2006年)一平面简谐波的表达式为y=0.03cos(8t+3x+π/4)(SI),则该波的频率v(Hz),波长λ(m)和波速u(m/s)依次为()。
环保方案中的工程概况应明确给出()。
根据《合同法》的规定,下列合同中,属于无效合同的有()。
ThedeathofEnronCorp.founderKennethL.LayearlyWednesdayraisesthepossibilitythathisconvictioncouldbeerased,comp
Thedepartmentchairman______withthankstheassistanceofallthefacultymembersforgettingthecelebrationreadyinashor
最新回复
(
0
)