首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y0=2e-x+xe-2x为三阶常系数齐次线性微分方程y"’+py"+qy’+ry=0的一个特解,且f(x)是该方程满足初始条件f(0)=-2,f’(0)=7,f"(0)=-18的特解,则∫0+∞f(x)dx=________。
设y0=2e-x+xe-2x为三阶常系数齐次线性微分方程y"’+py"+qy’+ry=0的一个特解,且f(x)是该方程满足初始条件f(0)=-2,f’(0)=7,f"(0)=-18的特解,则∫0+∞f(x)dx=________。
admin
2021-01-31
86
问题
设y
0
=2e
-x
+xe
-2x
为三阶常系数齐次线性微分方程y"’+py"+qy’+ry=0的一个特解,且f(x)是该方程满足初始条件f(0)=-2,f’(0)=7,f"(0)=-18的特解,则∫
0
+∞
f(x)dx=________。
选项
答案
1/4
解析
显然特征值为λ
1
=-1,λ
2
=λ
3
=-2,该方程的通解为
y=C
1
e
-x
+(C
2
+C
3
x)e
-2x
,
由f(0)=-2,f’(0)=7,f"(0)=-18得C
1
=2,C
2
=-4,C
3
=1,
故∫
0
+∞
f(x)dx=2∫
0
+∞
e
-x
dx-4∫
0
+∞
e
-2x
dx+∫
0
+∞
xe
-2x
dx
=2-2∫
0
+∞
e
-x
dx+(1/4)∫
0
+∞
xe
-x
dx=1/4。
转载请注明原文地址:https://kaotiyun.com/show/w4x4777K
0
考研数学三
相关试题推荐
(2003年)设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,齐次方程组Ax=0的通解为c(1,0,一3,2)T,证明α2,α3,α4是A*x=0的基础解系.
求微分方程(x一2xy—y2)y’+y2=0,y(0)=1的特解.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
设问方程组什么时候有解?什么时候无解?有解时,求出其相应的解.
随机试题
下列给定程序中,函数fun的功能是:在形参ss所指字符串数组中查找与形参t所指字符串相同的串,找到后返回该串在字符串数组中的位置(即下标值),若未找到则返回-1。ss所指字符串数组中共有N个内容不同的字符串,且串长小于M。请在下画线处填入正确的内
2014年年末,某省公路里程172167千米,同比增长2.8%,其中,高速公路4237千米,同比增长3.3%。国家铁路正线延展里程和营业里程分别为15060千米和9351千米,分别同比增长-0.28%和0.23%。地方铁路正线延展里程和营业里程分别为180
我国发展对外经济关系的基础是()
患者男,45岁,左眼翼状胬肉行单纯胬肉切除术后4个月,原胬肉切除区再次形成新生血管结缔组织,并且侵入角膜约4mm,此时再次手术最合适的治疗方案是
构成影响精神疾病的因素包括
某患者涂抹某化妆品后5~7天,再次涂抹时局部出现红肿、水疱、大疱,病变边界不清,自觉瘙痒并有灼热感。诊断可能为
根据齿向,平面齿轮传动可分为外啮合、内啮合及( )。
你所在检验检疫局要在某社区开展一次食品安全宣传活动,在活动期间还会为社区居民提供蔬菜质量的免费检测。如果领导让你负责,你会怎么做?
党的十七大报告指出,十一届三中全会以来,中国共产党坚持马克思主义思想路线。不断探索和回答的重大理论和实际问题是()
A、1000.B、100.C、200.D、2000.D男士说他曾经有过另外一个工作是士兵,女士问他是什么时候,他说是两千年前,而且恺撒很明显是2000年以前的人物,所以选D。
最新回复
(
0
)