首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内二阶可导,f’’(x)>0,且又存在点x0,使得f(x0)
设f(x)在(一∞,+∞)内二阶可导,f’’(x)>0,且又存在点x0,使得f(x0)
admin
2017-05-31
37
问题
设f(x)在(一∞,+∞)内二阶可导,f’’(x)>0,且
又存在点x
0
,使得f(x
0
)<0,试证:方程f(x)=0在(一∞,+∞)内有且仅有两个实根.
选项
答案
先证存在性. [*] 于是,可知f(x)在(0,+∞)内单调增加. 任取x∈[M,+∞),f(x)在[M,x]上连续,在(M,x)内可导,由拉格朗日中值定理知,存在点ξ∈(M,x),使得f(x)=f(M)+f’(ξ)(x—M),于是,[*] 又存在点x
0
,使得f(x
0
)<0.所以,由介值定理,存在点ξ
1
∈(x
0
,x),使得f(ξ
1
)=0. 同理可证,当x<0时,存在点ξ
2
∈(x,x
0
),使得f(ξ
2
)=0. 再证唯二性.(反证法) 假若f(x)=0有三个实根ξ
1
,ξ
2
,ξ
3
(ξ
1
<ξ
2
<ξ
3
),由洛尔定理,存在点η
1
∈(ξ
1
,ξ
2
),η
2
∈(ξ
2
,ξ
3
),使得f’(η
1
)=f’(η
2
)=0. 再由洛尔定理,存在点η∈(η
1
,η
2
),使得f’’(η)=0.与题设f’’(x)>0矛盾,故f(x)=0在(一∞,+∞)内有且仅有两个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/wYu4777K
0
考研数学一
相关试题推荐
4
[*]
0
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记当ab=cd时,求I的值.
求曲面x2+(y一1)2=1介于xOy平面与曲面(x2+y2)之间的部分的面积.
随机试题
眼的调节反应包括:_________,_________,_________。
以下有关建筑机械安全要求的说法正确的是()。
在空气净化设备中,喷淋塔的优点是()。
下列对账工作,属于企业账账核对的有()。
诱因
解析器是在()负责查询域名服务器时,解释域名服务器的应答,并将查询到的有关信息返回请求的程序或用户。
语句Print4+5\6*7/8Mod9的值是______。
为了使标签Label1透明且不具有边框,以下正确的属性设置是
ThedoctorinsistedthatPaul’smother______examinedthoroughly.
Forthispart,youareallowed30minutestowriteacompositiononthetopicTheAgingProblemInChina.Youshouldwriteatl
最新回复
(
0
)