首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
admin
2019-03-11
48
问题
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P
-1
AP)
T
属于特征值λ的特征向量是( )
选项
A、P
-1
α
B、P
T
α
C、Pα
D、(P
-1
)
T
α
答案
B
解析
由条件有A
T
=A,Aα=λα,故有
(P
-1
AP)
T
(P
T
α)=P
T
A(P
T
)
-1
P
T
α=P
T
Aα=P
T
λα=λ(P
T
α)
因为P
T
α≠0(否则P
T
α=0,两端左乘(P
T
)
-1
,得α=0,这与特征向量必为非零向量矛盾),故由特征值与特征向量的定义,即知非零向量P
T
α是方阵(P
T
AP)
T
的属于特征值λ的特征向量.因此,B正确.
转载请注明原文地址:https://kaotiyun.com/show/wkP4777K
0
考研数学三
相关试题推荐
设f(x)连续,令φ(x)=讨论φ(x)在x=0处的可导性.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设总体X的概率密度为其中θ>0,如果取得样本观测值为x1,x2,…,xn,求参数θ的矩估计值与最大似然估计值.
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)
设AB=C,证明:(1)如果B是可逆矩阵,则A的列向量和C的列向量组等价.(2)如果A是可逆矩阵,则B的行向量组和C的行向量组等价.
设A,B都是n阶矩阵,使得A+B可逆,证明B(A+B)一1A=A(A+B)一1B.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:∫0af(x)dx+∫0bφ(y)dy
设=e—1,则当x→0时f(x)是x的
当x→0时下列无穷小是x的n阶无穷小,求阶数n:(Ⅰ)一1;(Ⅱ)(1+tan2x)sinx一1;(Ⅲ);(Ⅳ)∫0xsint.sin(1一cost)2dt.
随机试题
作为一门独立学科的艺术学诞生于()
呼吸性酸中毒应首先处理的问题是
感受寒邪而致的“中寒”是指
小刘的轿车上了交强险和部分商业三者险。某日其将轿车借给同事王某,但不知王某无驾驶证。王某驾驶轿车与他人发生事故,交警认定王某承担全部责任,现在对于对受害人的赔偿问题,发生争议。对此问题,下列说法错误的是:
甲公司主要从事小型电子消费品的生产和销售。A注册会计师负责审计甲公司2016年度财务报表。资料一:A注册会计师在审计工作底稿中记录了所了解的甲公司情况及其环境,部分内容摘录如下:(1)2015年购入的一项股权投资划分为可供出售金融资产,2015年
1949年3月,中共七届二中全会提出全党工作重心的转变,这意味着()
PassageSevenAccordingtothepassage,whatcanwelearnaboutthedatapresentedbyPreis?
Howmanypartsdocsaconversationwithanewfriendusuallyconsistof?Whatdoyoudoin thefirstpartoftheconversation?
A、Wheredryandhumidairmassesmeet.B、Wheretheairbecomeswarmandhumid.C、Whenthunderstormsortornadoesoccur.D、Whent
A、InApril.B、InMay.C、InJuly.D、Notdecidedyet.D题目询问男士什么时候订婚。关键是听到男士说“全由April决定”和“我想我们要等她7月份毕业了”,可判断选项D(还没决定)正确。
最新回复
(
0
)