首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
admin
2021-01-19
68
问题
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小.
选项
答案
[详解1] 由题设知,[*]于是 [*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)]=λ
1
f(0)+λ
2
f(0)+λ
3
f(0)-f(0)=0, 而f(0)≠0,因此有λ
1
+λ
2
+λ
3
-1=0. 利用洛必塔法则,有[*] 同样有[*][λ
1
f’(h)+2λ
2
f’(2h)十3λ
3
f’(3h)]=(λ
1
+2λ
2
+3λ
3
)f’(0)=0, 而f’(0)≠0,因此有λ
1
+2λ
2
+3λ
3
=0. 再次利用洛必塔法则,有[*] 而f"(0)≠0,因此有λ
1
+4λ
2
+9λ
3
=0. 可见λ
1
,λ
2
,λ
3
满足[*] 由于其系数行列式[*]=2≠0,于是方程组有唯一解,即λ
1
,λ
2
,λ
3
可唯一确定. [详解2] 将f(h),f(2h),f(3h)分别在h=0处用泰勒公式展开,于是有 λ
1
f(h)+λ
2
f(2h)+λ
1
f(3h)-f(0) [*] =(λ
1
+λ
2
+λ
3
—1)f(0)+(λ
1
+2λ
2
+3λ
3
)f’(0)h+(λ+4λ
2
+9λ
3
)[*] 可见λ
1
,λ
2
,λ
3
满足[*] 此方程组有唯一解,因此λ
1
,λ
2
,λ
3
可唯一确定.
解析
题设相当于已知
,由此可用洛必塔法则或泰勒公式确定λ
1
,λ
2
,λ
3
是唯一的.
转载请注明原文地址:https://kaotiyun.com/show/wq84777K
0
考研数学二
相关试题推荐
矩阵的非零特征值是_______.
设函数y=y(χ)由方程χsiny-eχ+ey=0所确定,求=_______.
设z=z(x,y)有连续的二阶偏导数并满足(Ⅰ)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
求下列y(n):
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设f′(χ)在[0,1]上连续,且f(1)=f(0)=1.证明:∫01f′2(χ)dχ≥1.
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
设(2E一CB)A=C,其中A是3阶方阵A的转置矩阵,且.
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
随机试题
电阻并联电路中,能够成立关系的是()。
以下哪一种CΥ征象最有助于脑外肿瘤的诊断:
石料抗压试验要求破坏荷载应控制在压力机全程的20%~80%。()
在工程项目策划和决策阶段,项目建议书、可行性研究报告是()的工作成果。
下列选项不属于现代营销管理指导思想的是()。
研究学校情境中学与教的基本心理规律的心理学分支学科是()
在一行政诉讼案中,作为被告的某行政机关委托某律师担任诉讼代理人。该律师在诉讼期间调查收集了充分的证据材料。下列关于该律师做法的选项正确的是()。
学生认识具有与人类认识过程不同的显著特点是()。
Theideawasquitebrilliant.
Oneinsix.Believeitornot,that’sthenumberofAmericanswhostrugglewithhunger.Tomaketomorrowalittlebetter,Feedin
最新回复
(
0
)