首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,n)T, 如果齐次线性方程组Ax=0与Bx=0有非零公共解,求a
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,n)T, 如果齐次线性方程组Ax=0与Bx=0有非零公共解,求a
admin
2014-02-06
52
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η=(1,3,0,2)
T
,η
2
=(1,2,一1,3)
T
,又知齐次方程组Bx=0的基础解系是β
1
=(1,1,2,1)
T
,β
2
=(0,一3,1,n)
T
,
如果齐次线性方程组Ax=0与Bx=0有非零公共解,求a的值并求公共解.
选项
答案
设齐次线性方程组Ax=0与Bx=0的非零公共解为γ,则γ既可由η
1
,η
2
线性表出,也可由β
1
,β
2
线性表出,故可设y=x
1
η
1
+x
2
η
2
=一x
3
β
1
一x
4
β
2
,于是x
1
η
1
+x
2
η
2
+x
3
β
1
+x
4
β
2
=0.对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有(η
1
,η
2
,β
1
,β
2
)=[*]y≠0[*]x
1
,x
2
,x
3
,x
4
不全为0[*]秩r(η
1
,η
2
,β
1
,β
2
)<4[*]a=0.当a=0时,解出x
4
=t,x
3
=一t,x
2
=一t,x
1
=2t.因此Ax=0与Bx=0的公共解为γ=2tη
1
一tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/x7F4777K
0
考研数学三
相关试题推荐
入侵物种水花生的蔓延导致洪湖水质恶化、鱼蟹死亡。在相继使用物理和化学手段防治水花生蔓延的努力失败后。当地政府在专家组实地调研的基础上,决定引进专食水花生的叶甲,终于用生物防治手段遏制了水花生的蔓延,这表明()
十八大以来,我国文化建设在正本清源、守正创新中取得历史性成就、发生历史性变革,为新时代坚持和发展中国特色社会主义、开创党和国家事业全新局面提供了强大的正能量。“十四五”时期,我们要把文化建设放在全局工作的突出位置,切实抓紧抓好。满足人民精神文化需求、保障人
材料1历史已经并将继续证明,只有社会主义才能救中国,只有坚持和发展中国特色社会主义才能实现中华民族伟大复兴。国内外形势正在发生深刻复杂变化,我国发展仍处于重要战略机遇期。我们具备过去难以想象的良好发展条件,但也面临着许多前所未有的困难和挑战。中国
当地时间1月15日,美国总统特朗普在白宫椭圆形办公室会见中共中央政治局委员、国务院副总理、中美全面经济对话中方牵头人刘鹤,双方共同出席中美第一阶段经贸协议签署仪式。 刘鹤在协议签署仪式上表示,作为国际事务中负有重要责任的两个伟大国家,正视分歧、管控分歧
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
利用极坐标将积分,化成一元函数积分式,其中f连续.
问a,b为何值时,下列函数在其定义域内的每点处连续:
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为F(y),求随机变量u=X+Y的概率密度g(u).
随机试题
Themarketisaconcept.Ifyouaregrowingtomatoesinyourbackyardforsaleyouareproducingforthemarket.Youmightsell
同一个商标人在相同或类似商品上使用的若干个近似商标称为()
建设工程项目施工质量验收时,对施工质量保证资料的检查包括施工全过程的技术质量管理资料。其中,又以原材料、施工检测、测量复核及()资料为重点检查内容。
根据《中华人民共和国海关法》的规定,中华人民共和国海关是属于下述哪类性质的机关?()
下列各项中,应作为资产负债表中资产列报的有()。
作业活动是组织内的日常活动,在作业层上,主要关注点是()质量数据和信息。
王强是一位快递员,他负责由A地到B地的送货任务,送货方式为开汽车或骑电动车。他分别记录了开汽车和骑电动车各100次所用的送货时间,经过数据分析得到如下结果:开汽车:平均用时24分钟,方差为36;骑电动车:平均用时34分钟,方差为4。
股权控制
在层次化网络设计方案中,通常在(181)实现网络的访问策略控制。
WhatisGinger?Itis______withanaromaticflavor.
最新回复
(
0
)