首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
admin
2017-11-09
64
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Aχ=b的通解χ=( ).
选项
A、
B、
C、
D、
答案
C
解析
根据线性方程组解的性质,可知
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)
是非齐次线性方程组Aχ=b导出组Aχ=0的一个解.因为R(A)=3,所以Aχ=0的基础解系含4-3=1个解向量,而
2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,
故是Aχ=0的一个基础解系.因此Aχ=b的通解为
α
1
+k(2α
1
一α
2
-α
3
)=(1,2,3,4)
T
+k(2,3,4,5)
T
,k∈R,
即C正确.
对于其他几个选项,A选项中
(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
B选项中
(0,1,2,3)
T
=α
2
+α
3
,
D选项中
(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以选项A、B、D均不正确.
故应选C.
转载请注明原文地址:https://kaotiyun.com/show/xBX4777K
0
考研数学三
相关试题推荐
设A=,|A|>0且A*的特征值为一1,一2,2,则a11+a22+a33=________.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,求Aβ.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布,证明:Z=X+Y服从参数为2n,p的二项分布.
设f(x)在[a,b]上存在二阶导数.证明:存在ξ,η∈(a,b),使∫abf(t)dt=(b一a)3;
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,an=一1nf(x)dx(n=1,2,…).证明:反常积分∫1+∞f(x)dx与无穷级数同敛散.
A是n阶方阵,则A相似于对角阵的充分必要条件是()
随机试题
阅读下面的文言文,按要求答题。 学记虽有嘉肴,弗食,不知其旨也;虽有至道,弗学,不知其善也。是故学然后知不足,教然后知困。知不足,然后能自反也①;知困,然后能自强也,故曰:教学相长也。大学之法②,禁于
流行病学研究对象
急性持续性腹痛阵发性加剧伴休克,最可能的疾病是()。
公路工程地质钻探时,在破碎岩层中,岩芯采取率为()。
施工方应视(),编制深度不同的施工的进度计划,以及按不同计划周期的施工计划。
下列银行业犯罪中,其主观方面不是故意的是()。
甲公司与长期股权投资、合并财务报表有关的资料如下:(1)2013年度①1月1日,甲公司与非关联方丁公司进行债务重组,丁公司以其持有的公允价值为15000万元的乙公司70%有表决权的股份,抵偿前欠甲公司货款16000万元。甲公司对上述应收账款已计提坏账准
团体咨询的工作阶段成员的反应不包括()。
Excitement,fatigue,andanxietycanallbedetectedfromsomeone’sblinks,accordingtopsychologistJohnStern【1】WashingtonUn
TheUnitedStatestakesabiggershareoftheinternationalstudentmarketthananyothercountry.However,with22%ofthetota
最新回复
(
0
)