首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
admin
2018-08-12
89
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
t
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即 f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)-f’(t)一tf’(t)=f(t), 化简 [2f(t)一t]f’(t)=2f(t). 亦即 [*] 解这个微分方程得[*] 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入 [*] 因此该曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xLj4777K
0
考研数学二
相关试题推荐
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
[*]
设φ(x)=∫abln(x2+t)dt,求φ’(x),其中a>0,b>0.
设A是m×n阶矩阵,则下列命题正确的是().
[*]
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(xE∈[a,b]),g"(x)≠0(a
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2a1+α2-α3,α2+α3线性相关,则a=_______
设z=,其中f,g二阶可导,证明:
设A与B均为正交矩阵,并且|A|+|B|=0,证明:A+B不可逆.
(2000年)曲线y=(2χ-1)的斜渐近线方程为_______.
随机试题
焊接结构质量验收依据的检验文件中没有()。
寒邪直中三阴,真阳衰微,症见恶寒蜷卧,四肢厥冷,吐泻腹痛,口不渴,神疲欲寐,脉沉微者,治宜选用
下列说法正确的是
坡道的常用坡度一般为()。
在保持流动性及水泥用量不变的条件下使用减水剂,可使混凝土()。
Whenweanalyzethesaltsalinity(盐浓度)ofoceanwaters,wefindthatitvariesonlyslightlyfromplacetoplace.Nevertheless,s
下列情形中,构成徇私枉法罪的是()。
为了删除列表框中的一个列表项,应使用的列表框方法是
WhichoneofthefollowingisINCORRECT?
春运(Chunyun)是指中国春节前后一段时期里出现的一种高负荷交通运输,一般从春节前15天开始,持续约40天。对大多数中国人来说,在春节期间与家人团聚是一个悠久的传统。人们从工作、读书的地方回到家里,在除夕夜与家人一起吃团圆饭春运期间的客流量(pass
最新回复
(
0
)