首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1=(1,-1,2,-1)T,α2=(-3,4,-1,2)T,α3=(4,-5,3,-3)T,α4=(-1,A,3,0)T,β=(0,k,5,-1)T.试问λ,K取何值时,β不能由α1,α2,α3,α4线性表出?λ,K取何值时,β可由α1,α2,α
设向量α1=(1,-1,2,-1)T,α2=(-3,4,-1,2)T,α3=(4,-5,3,-3)T,α4=(-1,A,3,0)T,β=(0,k,5,-1)T.试问λ,K取何值时,β不能由α1,α2,α3,α4线性表出?λ,K取何值时,β可由α1,α2,α
admin
2017-06-14
70
问题
设向量α
1
=(1,-1,2,-1)
T
,α
2
=(-3,4,-1,2)
T
,α
3
=(4,-5,3,-3)
T
,α
4
=(-1,A,3,0)
T
,β=(0,k,5,-1)
T
.试问λ,K取何值时,β不能由α
1
,α
2
,α
3
,α
4
线性表出?λ,K取何值时,β可由α
1
,α
2
,α
3
,α
4
线性表出?并写出线性表达式.
选项
答案
本题相当于讨论线性方程组 AX=x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β 何时有解?无解? 由于 [*] 当k≠1,λ=2时,β不能由α
1
,α
2
,α
3
,α
4
线性表出, 当k=1,λ=2时,β可由α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一. [*] 所以β=(3-k
1
—2k
2
)α
1
+(1+k
1
-k
2
)α
2
+k
1
α
3
+k
2
α
4
(其中k
1
,k
2
为任意常数). 当A≠2,k为任意值时,β可由α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一. [*] 其中λ≠2,k,μ为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xdu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 A
极限=_________.
函数f(u,v)由关系式f[xg(y),Y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_________.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1与S2之间的立体体积.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
(1999年试题,九)设(1)求的值;(2)试证:对任意的常数λ>0,级数收敛.
(2005年试题,18)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
设f(x)在区间[0,1]上可微,且满足条件f(1)=,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
随机试题
提托穴的定位是()。
患者,女性,39岁,近半年来,每于感染或劳累后出现劳力性呼吸困难,并逐渐加重,休息后也不易缓解,一周前受凉后出现呼吸困难,伴咳嗽,咳大量泡沫样痰,夜间不能平卧,以“慢性心功能不全,二尖瓣狭窄”收入院。患者既往曾有反复链球菌性咽炎史。该患者心脏瓣膜病最可
月经周期的长短取决于下列何项因素
具有抗尿崩症作用的药物是
基金收益扣除按照国家规定可以扣除的费用等项目后的余额称为()。
某市区酒厂为增值税一般纳税人,2019年10月发生如下经济业务:(1)向某商场销售自产粮食白酒15吨,每吨不含税单价为80000元,收取包装物押金174000元,收取品牌使用费18100元。(2)从云南某酒厂购进粮食白酒6吨,专用发票上注明每吨不含税进
【2014广西】研究性学习既是一门课程,又是一种学习方式。()
LSAT
Inadditiontourgetoconformwhichwegenerateourselves,thereistheexternalpressureofthevariousformalandinformalgr
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)