首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
admin
2018-06-27
112
问题
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
选项
答案
记s=n-r(A),则本题要说明两点.(1)存在AX=β的s+1个线性无关的解.(2)AX=β的s+2个解一定线性相关. (1)设ξ为(Ⅰ)的一个解,η
1
,η
2
,…,η
s
为导出组的基础解系,则ξ不能用η
1
,η
2
,…,η
s
线性表示,因此ξ,η
1
,η
2
,…,η
s
线性无关.ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(Ⅰ)的s+1个解,并且它们等价于ξ,η
1
,η
2
,…,η
s
于是 r(ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
)=r(ξ,η
1
,η
2
,…,η
s
)=s+1, 因此ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(I)的s+1个线性无关的解. (2)AX=β的任何s+2个解都可用ξ,η
1
,η
2
,…,η
s
这s+1向量线性表示,因此一定线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/xlk4777K
0
考研数学二
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
设有3维列向量问λ取何值时:(1)β可由α1,α2,α3线性表示,且表达式唯一;(2)β可由α1,α2,α3线性表示,且表达式不唯一;(3)β不能由α1,α2,α3线性表示.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
随机试题
“悼亡”一词专指为“悼妻”,始自【】
Justbecauseyou’rebettereducateddoesn’tmeanthatyou’reanymorerationalthaneveryoneelse,nomatterhowhardyoumay
关于口服给药错误的描述为
慢性非细菌性前列腺炎的治疗原则包括
2%碱性戊二醛杀灭真菌需
汇发贸易公司于2007年7月4日进口一批货物,海关于当日开出税款缴纳证,交企业纳税。其中关税税款为人民币24000元,增值税税款为人民币35100元,消费税税款为人民币8900元。该公司于1月27日交回税款缴纳证。经核查,实际缴款日期为1月25日。该公司应
业主基于房屋所有权,享有对物业和相关共同事务进行管理的权利,这些权利包括()。
甲公司是一家非上市大型企业,为了提前实施《企业内部控制基本规范》,正在考虑设立审计委员会。下列各项关于甲公司设立审计委员会的具体方案内容中,正确的有()。
党成立初期,首先把工作重心放在
NewYork’sWCBSputsitinawaythatjustcan’tbebetterexpressed:"Itwasanaccidentwaitingtohappen."15-year-oldAl
最新回复
(
0
)