首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
admin
2018-05-21
13
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,…,n),任取k
i
>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得
k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M,显然有 m≤f(x
i
)≤M(i=1,2,…,n), 注意到k
i
>0(i=1,2,…,n), 所以有 k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,…,n), 同向不等式相加,得 (k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤(k
1
+k
2
+…+k
n
)M, 即m≤[*]≤M, 由介值定理,存在ξ∈[a,b],使得 [*] 即k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/xpr4777K
0
考研数学一
相关试题推荐
设f(x)具有二阶连续导数f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此微分方程的通解。
设总体X~U(1,θ),参数θ>1未知,X1,…,Xn是来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量和极大似然估计量;(Ⅱ)求上述两个估计量的数学期望。
方程y"’+2y"=x2+xe—2x的特解形式为()
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求。
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=
假定所涉及的反常积分(广义积分)收敛,证明∫—∞+∞f(x一)dx=∫—∞+∞f(x)dx.
设y=y(x)在[0,+∞)可导,在x∈(0,+∞)处的增量满足△y(1+△y)=a,当△x→0时a是△x的等价无穷小,又y(0)=1,则y(x)=()
设随机变量X与Y相互独立,且X服从正态分布N(0,1),Y在区间[-1,3]上服从均匀分布,则概率P{max(X,y)≥0}=________.
设ζ,η是两个相互独立且均服从正态分布的随机变量,则随机变量|ζ一η|的数学期望E(|ζ一η|)=________.
随机试题
以下属于茶艺人员佩戴发饰、头饰注意事项的有
下列可用于血清酶活性测定的是
A.销毁B.化制C.高温处理后食用D.盐腌处理后食用E.适于食用高致病性蓝耳病病猪的胴体应()。
施工索赔事件(又称为干扰事件),是指那些使实际情况与合同规定不符合、最终引起()变化的各类事件。
施工现场质量检查实测法的手段包括()。
企业与政府之间的财务关系体现为一种投资与受资的关系。()
根据合同法律制度的规定,下列表述中,不正确的是()。
债券的到期偿还方式不包括()。
投资出现()情形时,不应当确认为发生永久或实质性损害。
(2009年下半年)Scheduledevelopmentcallrequirethereviewandrevisionofdurationestimatesandresourceestimatestocreateanapp
最新回复
(
0
)