首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
admin
2016-07-20
57
问题
已知三元二次型χ
T
Aχ的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α.
①求χ
T
Aχ的表达式.
②求作正交变换χ=Qy,把χ
T
Aχ化为标准二次型.
选项
答案
①设A=[*],则条件Aα=2α即[*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2. 此二次型为4χ
1
χ
2
+4χ
1
χ
3
-4χ
2
χ
3
. ②先求A特征值 |λE-A|=[*]=(λ-2)
2
(λ+4). 于是A的特征值就是2,2,-4. 再求单位正交特征向量组. 属于2的特征向量是(A-2E)χ=0的非零解. A-2E=[*] 得(A-2E)χ=0的同解方程组:χ
1
-χ
2
-χ
3
=0. 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化:记 η
1
=β
1
/‖β
1
‖=[*]β
1
,η
2
=β
2
/‖β
2
‖[*]β
2
. 属于-4的特征向量是(A+4E)χ=0的非零解. 求出β
3
=(1,-1,-1)
T
是一个解,单位化:记 η
3
=β
3
/‖β
3
‖=[*]β
3
. 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4. 作正交变换χ=Qy,它把f(χ
1
,χ
2
,χ
3
)化为2y
1
2
+2y
2
2
-4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/y0w4777K
0
考研数学一
相关试题推荐
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求可逆矩阵P,使得PTAP=B
设可导函数y=y(x)由确定,则()
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设函数y=y(x)满足x=dt,x≥0求y(x)满足y关于x的二阶微分方程,并求y(x)的表达式
设积分dx收敛,则()
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
若f(u)为连续函数,L为光滑的封闭曲线,则∮Lf(x2+y2)(xdx+ydy)=().
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x-t)dt=ax2.求f(x);
随机试题
《民法典》第158条。请分析:附生效条件的民事法律行为的含义。
配制Na2S2O3溶液时,应当用新煮沸并冷却后的纯水,其原因是()。
可在门诊了解胎儿储备功能,并可作为催产素激惹试验的筛选试验是()
原发性三叉神经痛初期表现中,哪项是错误的
中医学认为,甲状腺功能亢进症的基本病理是
A、供体内预存有抗受体的ABO血型抗体B、供体内预存有抗受体的HLAI类抗原的抗体C、受体内预存有抗供体的ABO血型抗体D、受体内有针对供体组织器官的Tc细胞E、移植物中含有足够数量的免疫细胞移植器官超急性排斥反应是由于
假定某客户现有5万元的资金和每年年底1万元的储蓄,投资报酬率为3%,则下列理财目标可以顺利实现的有()。I.20年后积累约为40万元的退休金Ⅱ.10年后积累约为18万元的子女高等教育金Ⅲ.5年后积累约为20万元的
在企业的组织设计中,应遵循的原则是()。(2003年8月三级真题)
学生小张在假期擅自翻越学校围墙导致右腿摔伤。对于小张受伤害这件事,学校存在过错,但可免除赔偿责任。()
下列成语中,前者蕴含物理知识,后者蕴含化学知识的是()。
最新回复
(
0
)