首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α. ①求χTAχ的表达式. ②求作正交变换χ=Qy,把χTAχ化为标准二次型.
admin
2016-07-20
33
问题
已知三元二次型χ
T
Aχ的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α.
①求χ
T
Aχ的表达式.
②求作正交变换χ=Qy,把χ
T
Aχ化为标准二次型.
选项
答案
①设A=[*],则条件Aα=2α即[*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2. 此二次型为4χ
1
χ
2
+4χ
1
χ
3
-4χ
2
χ
3
. ②先求A特征值 |λE-A|=[*]=(λ-2)
2
(λ+4). 于是A的特征值就是2,2,-4. 再求单位正交特征向量组. 属于2的特征向量是(A-2E)χ=0的非零解. A-2E=[*] 得(A-2E)χ=0的同解方程组:χ
1
-χ
2
-χ
3
=0. 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化:记 η
1
=β
1
/‖β
1
‖=[*]β
1
,η
2
=β
2
/‖β
2
‖[*]β
2
. 属于-4的特征向量是(A+4E)χ=0的非零解. 求出β
3
=(1,-1,-1)
T
是一个解,单位化:记 η
3
=β
3
/‖β
3
‖=[*]β
3
. 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4. 作正交变换χ=Qy,它把f(χ
1
,χ
2
,χ
3
)化为2y
1
2
+2y
2
2
-4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/y0w4777K
0
考研数学一
相关试题推荐
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求可逆矩阵P,使得PTAP=B
设f(x)有连续导数,f(x)>0,且对任意x,h,满足f(x+h)=∫xx+hdt+f(x),f(1)=求f(x)
设f(x)满足f’(﹣x)=x[f’(x)-1],f(0)=0,求f(x)的极值
设f(x)有一个原函数为1+sin2x,则xf’(2x)dx=________
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B若AX=B,求X
设f(x,y)为连续函数,且f(x,y)=,则f(x,y)=__________.
利用变量替换u=x,v=y/x,可将方程化成新方程为().
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x+y)dxdy=∫-11f(t)dt,D:|x|+|y|≤1.
设f(x)为连续函数,将逐次积分∫01dx∫0xdy∫0yf(z)dz化成定积分的形式为________.
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x-t)dt=ax2.求f(x);
随机试题
这个标志是何含义?
崇高与丑的相似之处包括【】
治疗牙脱位时,应遵循的原则是
患者,女,42岁,颈部弥漫性肿大,伴四肢困乏,气短,纳果体瘦;舌苔薄,脉弱无力。治疗应首选( )
按病变深度可将龋损分为()。
《中华人民共和国民法通则》第156条规定:“本法自1987年1月1日起施行。”关于该条,下列说法不正确的是:()。
企业出售投资性房地产应当将取得的收入计入营业外收入,投资性房地产的账面价值计入营业外支出,发生的营业税计入营业税金及附加。()
恒利发展是在上海证券交易所挂牌的上市公司,股本总额10亿元,主营业务为医疗器械研发与生产。维义高科是从事互联网医疗业务的有限责任公司,甲公司和乙公司分别持有维义高科90%和10%的股权。为谋求业务转型,2015年6月3日,恒利发展与维义高科、甲公司、乙公司
人民代表大会是我国立法机关和国家权力机关,享有撤销法规、规章等规范性文件和人事罢免的权力,其监督权属于()监督权,因而具有极大的权威性。
严格意义上讲,罚金、罚款二者中必须由人民法院判决的是()。
最新回复
(
0
)