首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求使得不等式≤ln(x2+y2)≤A(x2+y2)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
求使得不等式≤ln(x2+y2)≤A(x2+y2)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
admin
2019-03-12
88
问题
求使得不等式
≤ln(x
2
+y
2
)≤A(x
2
+y
2
)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
选项
答案
在区域D={(x,y)|x>0,y>0}内 ln(x
2
+y
2
)≤A(x
2
+y
2
)[*]≤A, 因此使上式成立的常数A的最小值就是函数f(x,y)=[*]在区域D上的最大值.令r=x
2
+y
2
则A的最小值就是函数F(r)=[*]在区间(0,+∞)内的最大值.计算可得 [*] 这表明F(r)在(0,+∞)内的最大值是F(e)=[*]. 在区域D={(x,y)|x>0,y>0}内 [*]<ln(x
2
+y
2
) → B≤xyln(x
2
+y
2
), 因此使上式成立的常数B的最大值就是函数g(x,y)=xyln(x
2
+y
2
)在区域D上的最小值.计算可得 [*] 由此可知g(x,y)在D中有唯一驻点[*].因为在区域D的边界{(x,y)|x=0,y≥0}与{(x,y)|x≥0,y=0}上函数g(x,y)=0,而且当x
2
+y
2
≥1时g(x,y)≥0,从而[*]就是g(x,y)在D内的最小值.即B的最大值是一[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/y5P4777K
0
考研数学三
相关试题推荐
设f(x)是在(一∞,+∞)上连续且以T为周期的周期函数,求证:方程f(x)一的闭区间上至少有一个实根.
已知一ax一b)=0,其中a,b是常数,则
设某商品的需求量D和供给量S各自对价格P的函数为D(P)=,S(P)=6P,且P是时间t的函数,并满足方程=k[D(P)一s(P)],其中a,b,k为正的常数.求:(Ⅰ)需求量与供给量相等时的均衡价格P3;(Ⅱ)当t=0,P=1时的价格函数P(t);(Ⅲ
已知随机变量X与Y的相关系数ρ=,则根据切比雪夫不等式有估计式P{|X一Y|≥}≤________.
设随机变量X的概率密度为f(x),则随机变量|X|的概率密度f1(x)为
设二维随机变量(X,Y)的分布律为(Ⅰ)求常数a;(Ⅱ)求两个边缘分布律;(Ⅲ)说明X与Y是否独立;(Ⅳ)求3X+4Y的分布律;(Ⅴ)求P{X+Y>1}.
矩阵与()相似.
设3阶实对阵矩阵A满足A2-3A+2E=O,且|A|=2,则二次型f=χTAχ的标准形为_______.
设有正项级数是它的部分和。(Ⅰ)证明收敛;(Ⅱ)判断级数是条件收敛还是绝对收敛,并给予证明。
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X-μ|<3σ}.
随机试题
孙明与周大风自小就是好朋友。孙明为人老实,性格内向;周大风很是机灵,颇有经济头脑。改革开放以来,各大、中、小城市都致力于规划建设,改善市容。周大风看到建材市场前景很好,就约孙明一起做建材生意。由于两人齐心合力,勤奋吃苦,加之机会好,开始几趟生意都很不错,赚
单卵双胎发生原因:
颈椎斜位(前斜位)摄影,中心线应
基金管理人的董事、监事可以担任基金托管人或者其他基金管理人的任何职务。()
国际上用来综合考察居民间收入分配差异状况的一个重要分析指标是()。
电信条例规定,电信业务经营者因工程施工、网络建设等原因,造成电信服务中断的,在及时告知用户后,应当()。
给定资料1.国家秘密是国家安全和利益的信息表现形式,是国家的重要战略资源,也是国家财产的一种特殊形态.与广大公民的切身利益密切相关。党政机关是国家秘密生成的重要源头和运转枢纽,机关工作人员是国家秘密信息及载体制作、使用和处理的主要承担者。随着我国
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:存在η∈,使得f(η)=η;
A.taughtB.violentC.vigorousD.tacklingE.contactF.meetingG.fixedH.onI.heldJ.tocomeK.spreadL.manyM.throug
Whetherit’scurledupinthefetalposition,flatonthestomachorstretchedoutacrossthebed,thewaypeoplesleep【C1】_____
最新回复
(
0
)