首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k= ( )
设F(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k= ( )
admin
2018-12-21
133
问题
设F(x)在x=0的某邻域内连续,且当x→0时,f(x)与x
m
为同阶无穷小.又设当x→0时,F(x)=∫
0
x
n
f(t)dt与x
k
为同阶无穷小,其中m与n为正整数.则k= ( )
选项
A、mn﹢n.
B、2n﹢m.
C、m﹢n.
D、mn﹢n-1.
答案
A
解析
当x→0时,f(x)与x
m
为同阶无穷小,从而知存在常数A≠0,当x→0时,f(x)~Ax
m
,从而,f(x
n
)~Ax
nm
.于是
由题意可知,上式为不等于零的常数,故k=nm﹢n.
转载请注明原文地址:https://kaotiyun.com/show/yAj4777K
0
考研数学二
相关试题推荐
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2008年)曲线sin(χy)+ln(y-χ)=χ在点(0,1)处的切线方程是_______.
(2007年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知=3(1+t)。
交换累次积分I的积分次序:I=.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>2φ(x)dx,则至少存在一点ξ∈(1,3),
随机试题
患者,女,40岁,主诉右眼被玉米叶划伤后疼痛3天。检查:右眼睫状充血,角膜颞侧可见3mm~3mm大小病灶,表明较干燥,周边呈毛刺状改变,角膜基质水肿,前房可见1mm积脓。该患者最可能的诊断是
关于人体水的代谢,下列说法错误的是
关于胰腺的描述,下列说法正确的是
胃食管反流病患者应避免使用的药物是
劳动者的工作权和休息权是宪法规定的()。
根据人民币银行结算账户管理的有关规定,下列款项中,可以转入个人银行结算账户的有()。
国际经验表明,一个国家人均CDP在3000美元与10000美元之间时,容易发生“中等收入陷阱”。关于这种经济现象,下列说法中正确的是()。
简述法律推理的特征。
线性方程组则()
A、Englishlanguageproficiency.B、Differentculturalpractices.C、Differentnegotiationtasks.D、TheAmericanizedstyle.B本题考查在J
最新回复
(
0
)