首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是3维向量空间R3中的一组基。则由基α2,α1—α2,α1+α3到基α1+α2,α3,α2—α1的过渡矩阵为( )
设α1,α2,α3是3维向量空间R3中的一组基。则由基α2,α1—α2,α1+α3到基α1+α2,α3,α2—α1的过渡矩阵为( )
admin
2019-03-23
34
问题
设α
1
,α
2
,α
3
是3维向量空间R
3
中的一组基。则由基α
2
,α
1
—α
2
,α
1
+α
3
到基α
1
+α
2
,α
3
,α
2
—α
1
的过渡矩阵为( )
选项
A、
B、
C、
D、
答案
C
解析
设(α
1
+α
2
,α
3
,α
2
—α
1
)=(α
2
,α
1
—α
2
,α
1
+α
3
)C,则
由于α
1
,α
2
,α
3
是R
3
中的一组基,故(α
1
,α
2
,α
3
)可逆,则
故选C。
转载请注明原文地址:https://kaotiyun.com/show/yHV4777K
0
考研数学二
相关试题推荐
设A为实矩阵,证明r(ATA)=r(A).
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
3阶矩阵,已知r(AB)小于r(A)和r(B),求a,b和r(AB).
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
椭球面S2是椭圆绕戈轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。(I)求S1及S2的方程;(Ⅱ)求S1与S2之间的立体体积。
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1,则正确的是(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(-1)f"(x)-xf’(x)=ex-1,则下列说法正确的是(A)f(0)
随机试题
计算机网络协议组成的三要素是:语法、________和时序。
卡波环形成的可能原因是
预应力混凝土结构的优点是()。
2016年7月1日,乙公司为兴建厂房从银行借入专门借款5000万元,借款期限为2年,年利率为5%,借款利息按季支付。乙公司于2016年10月1日正式开工兴建厂房,预计工期1年零3个月,工程采用出包方式。乙公司于开工当日、2016年12月31日分别支付工
皑皑白雪,在晚霞的映照下,呈现出一片红色,但是我们对雪地的知觉仍然是白色。这是因为人的知觉具有()。
我国中小学德育的重点具体说来应当包括或强调()。
A、 B、 C、 D、 C
C
Youmust______yourdictionarywithyouwhenyoucomeheretomorrow.
Humanbeingshave______themselvestoverydiverseenvironmentswiththehelpoffire,agricultureandmachines.
最新回复
(
0
)