首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是3维向量空间R3中的一组基。则由基α2,α1—α2,α1+α3到基α1+α2,α3,α2—α1的过渡矩阵为( )
设α1,α2,α3是3维向量空间R3中的一组基。则由基α2,α1—α2,α1+α3到基α1+α2,α3,α2—α1的过渡矩阵为( )
admin
2019-03-23
56
问题
设α
1
,α
2
,α
3
是3维向量空间R
3
中的一组基。则由基α
2
,α
1
—α
2
,α
1
+α
3
到基α
1
+α
2
,α
3
,α
2
—α
1
的过渡矩阵为( )
选项
A、
B、
C、
D、
答案
C
解析
设(α
1
+α
2
,α
3
,α
2
—α
1
)=(α
2
,α
1
—α
2
,α
1
+α
3
)C,则
由于α
1
,α
2
,α
3
是R
3
中的一组基,故(α
1
,α
2
,α
3
)可逆,则
故选C。
转载请注明原文地址:https://kaotiyun.com/show/yHV4777K
0
考研数学二
相关试题推荐
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值.
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处连续。
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。求关系式中的矩阵A;
随机试题
《中华人民共和国宪法》规定()。
在Web网页中超链接只有一种表现形式,即以文本方式标注的。()
女,63岁,绝经后不规则阴道流血2个月。可选用哪些影像学检查
系统性红斑狼疮患者的皮肤护理,下列哪项不妥
通常将导热系数λ值不大于( )的材料称为隔热材料。
选择中介目标的可控性是指货币政策中介目标要能通过()进行调控。
物流是个______型产业,物流标准化涉及众多的行业和部门。
公元前770年,()迁都洛邑,从这年到公元前476年,是中国史上的春秋时代。
试论述内部化理论的涵义和意义。[上海财经大学2018、2015、2011国际商务硕士;南开大学2017国际商务硕士]
Ifitwereonlynecessarytodecidewhethertoteachelementarysciencetoeveryoneonamassbasisortofindthegiftedfewan
最新回复
(
0
)