首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
admin
2017-06-08
55
问题
已知A=
可对角化,求可逆矩阵P及对角矩阵Λ,使P
-1
AP=Λ.
选项
答案
由特征多项式 [*] 知矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2. 因为矩阵A可以相似对角化,故r(E-A)=1.而 [*] 所以x=6. 当λ=1时,由(E-A)x=0得基础解系α
1
=(-2,1,0)
T
,α
2
=(0,0,1)
T
. 当λ=-2时,由(-2E-A)x=0得基础解系α
3
=(-5,1,3)
T
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1ct4777K
0
考研数学二
相关试题推荐
设f(x)=∫0xsint/(π-t)dt,则∫0πf(x)dx=________.
[*]
A、40πB、80πC、20πD、60πB
设f(x)在[0,1]上连续,取正值且单调减少,证明
设,证明fˊ(x)在点x=0处连续.
设A为n阶可逆矩阵,则下列结论正确的是().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
随机试题
中等量胸腔积液液面上方的体征特点为
关于中小企业实行会计电算化的岗位设置,下列说法正确的是()。
关于系列基金,下列说法不正确的是()。
个人转让下列财产不需缴纳个人所得税的是()。
新课程下的课程总目标按三个维度表达,即_______、_______、_______。
高中语文必修和选修课程均按___________组织学习内容,每个模块36学时,2学分。
—It’sreallyhottoday.Whatdrinksdowehaveinthefridge?—Wehavesome______.
态度与品德在人的一生中具有重要作用,请结合教学实际,谈谈如何帮助学生形成良好的态度与品德。
下图所示的数据模型属于
TheintelligencetestsusedmostoftentodayarebasedontheworkofaFrenchman,AlfredBinet.In1905,Binetwasaskedbythe
最新回复
(
0
)