首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(2,1,3,1),α2=(1,2,0,1),α3=(一1,1,一3,0),α4=(1,1,1,1),试求L(α1,α2,α3,α4)的一组基与维数.
设α1=(2,1,3,1),α2=(1,2,0,1),α3=(一1,1,一3,0),α4=(1,1,1,1),试求L(α1,α2,α3,α4)的一组基与维数.
admin
2020-09-25
65
问题
设α
1
=(2,1,3,1),α
2
=(1,2,0,1),α
3
=(一1,1,一3,0),α
4
=(1,1,1,1),试求L(α
1
,α
2
,α
3
,α
4
)的一组基与维数.
选项
答案
以α
1
,α
2
,α
3
,α
4
为列向量作矩阵A,对A施以初等行变换 [*] 从而可得α
1
,α
2
,α
4
为一个最大无关组,所以L(α
1
,α
2
,α
3
,α
4
)的一组基为α
1
,α
2
,α
4
,维数是3.
解析
转载请注明原文地址:https://kaotiyun.com/show/yWx4777K
0
考研数学三
相关试题推荐
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
微分方程+y=1的通解是_________.
已知X=AX+B,其中求矩阵X.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
随机试题
在Internt中,电子公告板的缩写是()。
It’sstrangethatshe______herownshortcomings.
女孩,5岁,门珍诊断为21-三体综合征,其核型分析为46,XX,t(14q21q),最可能属于下列哪种染色体畸变所致
场景某市规划中的隧道总长度为2000m,位于东二环高速公路和环城高速公路东线之间。隧道规划控制宽度为50m,设计净高高于5m,为城市一级主干道,双向四车道。某市政工程公司通过竞标获得该项工程的施工任务。该隧道工程项目采用喷锚暗挖法施工,该工程施工项目部
上海陆上最高点为(),海拔高度99.8米,立有石碑“佘山之巅”。
治安保卫重点单位是关系全国或者所在地区国计民生、国家安全和公共安全的单位。下列不属于治安保卫重点单位的是()。
【2010年江西省第50题】从一瓶浓度为20%的消毒液中倒出后,加满清水,再倒出,又加满清水,此时消毒液的浓度为()。
半径为的圆在抛物线x=凹的一侧上滚动。当圆心以速率V0匀速上升时,求圆心的横坐标ξ的增长速度。
有以下程序段,单击Commandl按钮后,屏幕上的输出结果是()。PrivateSubCommandl_Click()Fori=6To9PrintTab(i*i),iNextiEndSub
设有如下的程序段:inta[]=(1,2,3,4,5),*t;t=a;则下列说法正确的是()
最新回复
(
0
)