首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ1+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ1+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2018-09-25
55
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
1
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关 <=>λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关 <=>[λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
] [*] 的秩为3 <=>|A|=λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关, [*] =2λ
1
λ
2
λ
3
).
解析
转载请注明原文地址:https://kaotiyun.com/show/yeg4777K
0
考研数学一
相关试题推荐
设4阶矩阵满足关系式A(E—C-1B)TCT=E,求A.
设f(x)是区间[-π,π]上的偶函数,且满足证明:f(x)在[-π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
已知α1,α2,α3线性无关,证明2α1+3α2,α2一α3,α1+α2+α3线性无关.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
随机试题
异氧菌测定过程中,当培养皿中培养基固化后,应平放平皿,无需倒置。
在一个串联电阻的电路中,它的总电流也就是流过某一个电阻的电流。()
手术后应加压包扎的是
患儿女,8个月。母乳喂养,加辅食,近2月来,面色蜡黄,表情呆滞,舌面光滑,有轻微震颤,查体可见肝于肋下4cm,血常规检查示Hb:90g/L,RBC:2×1012/L,血清维生素B12降低。该患儿最适宜的治疗是()
(2006年)1997年沈某取得一房屋的房产证。2001年5月其儿媳李某以委托代理人身份到某市房管局办理换证事官,在申请书一栏中填写“房屋为沈某、沈某某(沈某的儿子)共有”,但沈某后领取的房产证中存共有人一栏空白。2005年沈某将此房屋卖给赵某,并到某市房
对非企业法人进行再分类,可以分为()。
限额领料单属于()。
布置活动区时要考虑各个区域的性质,以免相互干扰,这是考虑()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
A、Sheteachesinmathdepartment.B、ShewillnotrecoveruntilFriday.C、Sheoftenmissesclassesforbeingsick.D、Shehasacl
最新回复
(
0
)