首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
admin
2016-10-26
59
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
选项
答案
(定义法,同乘) 对矩阵B按列分块,记B=(β
1
,β
2
,…,β
n
),若x
1
β
1
+x
2
β
2
+…+x
n
β
n
=0,用分块矩阵可写成 (β
1
,β
2
,…,β
n
)[*]=0, 即Bx=0. 用矩阵A左乘上式,并代入AB=E,得x=Ex=ABx=A0=0.所以B的列向量β
1
,β
2
,…,β
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/BLu4777K
0
考研数学一
相关试题推荐
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
设一盒子中有5个球,编号分别为1,2,3,4,5.如果每次等可能地从中任取一球,记录其编号后放回,求3次取球得到的最大编号X的概率分布.如果一次从袋中任取3个球,求这3个球中最大编号y的概率分布.
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
幂级数x2n-1的收敛半径R=___________.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
设Z;=Xi+Xn+i=1,2,…,n),为从总体Z中取出的样本容量为n,的样本.则E(Zi)=E(Xi)+E(Xn+i)=μ+μ=2μD(Zi)=D(Xi+Xn+i)=D(xi)+D(Xn+i)(Xi与Xn+i相互独立)=σ2+σ2=2σ2∴Z-N
求曲面积分其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设X1,X2,X3(n>1)是来自总体N(μ,σ)的随机样本,用2X2,-X1,及X1作总体参数μ为估计算时,最有效的是________.
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直立于水中,而其短半轴与水面相齐,求水对薄板的侧压力.
随机试题
小李去外地出差,出行工具可以在飞机、火车、长途汽车之间进行选择,三种运输方式经营企业之间的竞争关系是()
中毒型菌痢的发病主要是由于
孙李二人在起诉时需要提供的基本事实是()。孙李二人仅向法院提供了行政机关的处理决定书,而不能提供其他证据事实,法院审理此案可按()审理。
土地所有者、使用者和土地他项权利者更改地址的,应当在地址发生变更之日起()申请地址变更登记。
施工组织设计中的工程概况,主要包括______。
对幼儿英语学习效果的评价应当关注()和幼儿对所听英语的理解程度。
有预定的目的、需要一定意志努力的注意,指的是()。
小明不爱吃菜,只爱吃肉,妈妈为了改变他的这种不良习惯,告诉他,只要吃5根青菜,就可以吃一块肉。这体现了哪种强化原理()
李先生购买一处房产价值为100万元,首付金额为20万,其余向银行贷款。贷款年利率为12%(年度百分率),按月还款,贷款期限为20年。如果按照等额本金的方式还款.则李先生第一个月大约需要向银行偿还()。
有3个关系R1、R2和R3如下所示: 则由关系R1和R2得到关系R3的运算是()。
最新回复
(
0
)