首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵 其中A*是A的伴随矩阵,I为n阶单位矩阵. (1)计算并化简PQ; (2)证明矩阵Q可逆的充分必要条件是αTA—1α≠b.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵 其中A*是A的伴随矩阵,I为n阶单位矩阵. (1)计算并化简PQ; (2)证明矩阵Q可逆的充分必要条件是αTA—1α≠b.
admin
2016-04-11
58
问题
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵
其中A
*
是A的伴随矩阵,I为n阶单位矩阵.
(1)计算并化简PQ;
(2)证明矩阵Q可逆的充分必要条件是α
T
A
—1
α≠b.
选项
答案
(1)PQ=[*] (2)由(1)得|PQ|=|A|
2
(b一α
T
A
—1
α),而|PQ|—|P||Q|,且由条件知|P|=|A|≠0→|Q|=|A|(b一α
T
A
—1
α),因而Q可逆[*]b≠α
T
A
—1
α.
解析
转载请注明原文地址:https://kaotiyun.com/show/yyw4777K
0
考研数学一
相关试题推荐
设是正交矩阵,b>0,c>0求a,b,c的值;
设有三个线性无关的特征向量,则()
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。设x=(x1,x2,x3)T,求方程xTAx=0的全部解。
设A是3阶可逆矩阵,A的特征值为1,1/2,1/3,则|A|的代数余子式A11,A22,A33之和A11+A22+A33=________。
设向量β=(b,1,1)T可由α1=(a,0,1)T,α2=(1,a-1,1)T,α3=(1,0,a)T线性表示,且表示方法不唯一,记A=(α1,α2,α3)。求a,b的值,并写出β由α1,α2,α3表示的线性表达式
设,B为3×4矩阵,且r(B)=3,若r(AB)=2,则a=________。
设ξ1=为矩阵A=的一个特征向量.(Ⅰ)求常数a,b的值及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
已知三阶方阵A,B满足关系式E+B=AB,的三个特征值分别为3,-3,0,则|B-1+2E|=_______.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________.
随机试题
1822年,英国人巴贝奇首先提出来整个计算过程自动化的概念,设计出了第一台通用自动时序控制机械式计算机,称为________。
为观察肾的分泌排泄功能应做的检查是( )
预防HBeAg阳性母亲所生的新生儿HBV感染最有效的措施是
下列哪种情况在发生垂体危象时最为多见
据统计报载:截至到2001年年底,某市有高科技园区3个,已征土地6325hm2,占该市各类开发区已征土地总面积的18%。该城市在2002年年初,为了合理的利用已征土地,综合制定了科学的规划布局方案,将废弃的小型工场、市场等以及公共设施进行了重新布置,对城
工程项目质量控制系统的构成,依控制内容划分不正确的为()。
年化收益率有______与______之分。( )
对幼儿园活动的正确理解是()。
Studythedrawingcarefullyandwriteanessayof160-200words.Youshould1)describethedrawingbriefly,2)interpretthe
A、Sheagreeswithdieting.B、Sheopposesdieting.C、Shenevercaresaboutdieting.D、Shehasbeenonadiet.B信息明示题。对话一开始,男士询问女士
最新回复
(
0
)