首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫-aa|x-t|f(t)dt (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)-a2一1时.求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫-aa|x-t|f(t)dt (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)-a2一1时.求函数f(x).
admin
2020-08-04
72
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫
-a
a
|x-t|f(t)dt
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)-a
2
一1时.求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x一t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt—∫
-a
x
tf(t)dt+∫
-a
-a
tf(t)dt—x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt—∫
-a
x
tf(t)dt—∫
a
x
tf(t)dt+x∫
a
x
f(t)dt,F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
-a
a
f(t)dt+xf(x) =∫
-a
a
f(t)dt—∫
x
a
f(t)dt,因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
f(x)dx且f(x)为偶函数,所以F,(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点. 故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
f(t)dt (Ⅲ)由2∫
0
a
tf(t)dt=f(a)-a
2
一1两边求导得 2af(a)=f’(a)一2a,于是f’(x)一2xf(x)=2x解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=Ce
x
一1,在2∫
0
a
tf(t)dt=∫(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/zHx4777K
0
考研数学三
相关试题推荐
设u=f(x.y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy—y=0与ez一xz=0确定,求
设随机变量X和Y分别服从B(1,)和B(1,),已知P{x=0,Y=0}=求:P{X=1|X2+Y2=1}。
设随机变量X和Y分别服从B(1,)和B(1,),已知P{x=0,Y=0}=求:X,Y)的分布;
设函数f(x,y)可微,=ecoty,求f(x,y).
设①a,b取什么值时存在矩阵X,满足AX—CX=B?②求满足AX—CX=B的矩阵X的一般形式.
(05年)微分方程χy′+y=0满足初始条件y(1)=2的特解为_______.
曲线y=x2+2lnx在其拐点处的切线方程是_______.
设由来自正恣总体X~N(μ,0.92)容量为9的简单随机样本,得样本均值=5.则未知参数μ的置信度为0.95的置信区间是_______.
随机试题
腹部损伤出现下列哪种情况,即应考虑腹腔内脏器损伤()
较大的任意皮瓣长宽比值一般不宜超过
女,28岁。对与她交往的两个男朋友都很喜欢,于是咨询心理医生,并询问该医生如何选择,该医生只是帮其分析利弊,并没有回答其问题。该医生在这件事情上采取了()
权益负债比率,也称作股东权益比率,是负债总额与股东权益总额之间的比率。()
股份有限公司以超过股票票面金额的发行价格发行股份所得的溢价款应当列为公司的()。
一般来说,流动比率一般维持在()左右较为理想。
(2015·吉林)王某在网上购买的以下商品中,能够适用“七天无理由退货”的是()(易错)
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组Ax=0的通解为__________.
Wherearethey?
Thepassagemainlydiscussesthefactorsleadingtoplasticbagpollution..Discardedplasticbagsmaybecomehorribleserialk
最新回复
(
0
)