首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
admin
2019-03-30
73
问题
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
选项
答案
证一 将待证的不等式中的b换成x.引入辅助函数F(x)=xsinx+2cosx+πx,x∈[0,π],利用函数的单调性证之.因F’(x)=xcosx-sinx+π,F’(π)=0,且 F"(x)=cosx-xsinx-cosx=-xsinx<0, x∈(0,π), 于是F’(x)在[0,π]上单调减少,因而有 F’(x)>F’(π)=0, .x∈(0,π). 即F(x)在(0,π)内单调增加,从而当0<a<b<π时,有 F(b)>F(a), 即 bsinb+2cosb+πb>asina+2cosa+πa. 证二 设φ(x)=xsinx+2cosx,x∈[0,π],对φ(x)在[a,b]上应用拉格朗日中值定理,得到φ(b)-φ(a)=φ’(ξ)(b-a),ξ∈(a,b)[*](0,π),即 bsinb+2cosb-asina-2cosa=(ξcosξ-sinξ)(b-a). ① 设g(x)=xcosx-sinx,x∈[0,π],则 g’(x)=cosx-xsinx-cosx=-xsinx<0, x∈(0,π). 因而g(x)在[0,π]上单调减少,故ξcosξ-sinξ>g(π)=-π. 由式①得到 bsinb+2cosb-asina-2cosa>-π(b-a), 移项得到 bsinb+2cosb+πb>asina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/zaP4777K
0
考研数学三
相关试题推荐
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明:(Ⅰ)η*,ξ1,…,ξn—r线性无关;(Ⅱ)η*,η*+ξ1,…,η*+ξn—r线性无关。
设A是m×n矩阵,E是n阶单位阵,矩阵B=一aE+ATA是正定阵,则a的取值范围是________。
设曲线y=f(x)与y=x2—x在点(1,0)处有公共的切线,则=________。
(1)设y=y(x)由方程ey+6xy+x2-1=0确定,求y’’(0).(2)设y=y(x)是由exy-x+y-2=0确定的隐函数,求y’’(0).
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=______.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y’’-6y’+9y=e3x,则y(x)=______.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
(2004年)设有以下命题:则以上命题中正确的是()
随机试题
A.胸部X线心影大小B.放射性核素检查心室大小C.E/A比值D.左心室射血分数E.血浆脑钠肽有助于心力衰竭诊断及判断预后的指标是
患者,男性,35岁,因肱骨干骨折入院,伤后局部组织肿胀明显。手法复位后行石膏固定。术后护士应注意观察肢端血运。若有血运障碍,下面哪种表现最不可能发生
反映了净资产中的高流动性部分,表明证券公司变现以满足支付需要和应对风险的资金数的是()。
下列产品最适合采用历史模拟法计量风险价值(VaR)的是()。
银行工作人员制作虚假的银行存单交付给他人,该伪造行为属于()。
企业在进行利润分配时,可供利润分配的来源有()。
对商品作引人误解的虚假宣传,监督检查部门应当责令其停止违法行为,消除影响,可以根据情节处以罚款的数额是()。
我国出口商品作价时,应该注意的问题有哪些?
根据我国《宪法》,围务院常务会议的组成人员是()。
Statisticsshowthattheaveragefamilysizeincreasesininverseratiotothemother’syearsofeducation.
最新回复
(
0
)