首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0
admin
2021-10-18
63
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫
a
ξ
f(t)dt/∫
ξ
b
f(t)dt=0
选项
答案
令φ(x)=f(x)∫
x
b
g(t)dt+g(x)∫
a
x
f(t)dt,φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且φ’(x)=[f’(x)∫
x
b
g(t)dt-f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(t)dt]=f’(x)∫
x
b
g(t)dt+g’(x)∫
a
x
f(t)dt,因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ’(ξ)=0,即f’(ξ)∫
ξ
b
g(t)dt+g’(ξ)∫
a
ξ
f(t)dt=0,由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0,从而就有∫
x
b
g(t)dt>0,于是有f’(ξ)/g’(ξ)+∫
a
ξ
f(t)dt/=0∫
ξ
b
g(t)dt
解析
转载请注明原文地址:https://kaotiyun.com/show/zjy4777K
0
考研数学二
相关试题推荐
设求a,b及正交矩阵P,使得PTAP=B.
设z=f(xy)+yφ(x+y),且f,φ具有二阶连续偏导数,求
设常数0<a<1,求
求下列平面图形分别绕x轴、y轴旋转产生的旋转体的体积:(1)曲线与直线x=1,x=4,y=0所围成的图形;(2)在区间[0,π/2]上,曲线y=sinx与直线x=π/2,y=0所围成的图形;(3)曲线y=x3与直线x=2,y=0所围成的图形;(4)
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
=_______(其中a为常数).
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤C.
设且二阶连续可导,又,求f(x).
设且B=P-1AP.当时,求矩阵B;
随机试题
行政强制的设定和实施,应当适当。采用非强制手段可以达到行政管理目的的,不得设定和实施行政强制()
口腔中可以消化的营养素是________。
简述破产债权的范围。
高钾血症患者,首要处理措施为
循环系统平均充盈压的高低取决于
心力衰竭诱发因素中,最常见的是过度劳累或情绪激动。()
Soilsarenotrenewableresourcesthatsupportallmankind.
救济公平是指为权利受到侵害或处于弱势地位的公民提供平等有效的救济。救济公平包括
【F1】WhenBushaskedCheney,theheadofhisvicepresidentialsearchteam,toactuallybecomehisrunningmate,itwascleartha
在窗体上有一个名称为Drive1的驱动器列表框,一个名称为Dir1的目录列表框,一个名称为File1的文件列表框,两个名称分别为Label1、Label2的标签(标题分别为空白和“共有文件”)。要使得驱动器列表框与目录列表框、目录列表框与文件列表框同步变化
最新回复
(
0
)