首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0
admin
2021-10-18
40
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫
a
ξ
f(t)dt/∫
ξ
b
f(t)dt=0
选项
答案
令φ(x)=f(x)∫
x
b
g(t)dt+g(x)∫
a
x
f(t)dt,φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且φ’(x)=[f’(x)∫
x
b
g(t)dt-f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(t)dt]=f’(x)∫
x
b
g(t)dt+g’(x)∫
a
x
f(t)dt,因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ’(ξ)=0,即f’(ξ)∫
ξ
b
g(t)dt+g’(ξ)∫
a
ξ
f(t)dt=0,由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0,从而就有∫
x
b
g(t)dt>0,于是有f’(ξ)/g’(ξ)+∫
a
ξ
f(t)dt/=0∫
ξ
b
g(t)dt
解析
转载请注明原文地址:https://kaotiyun.com/show/zjy4777K
0
考研数学二
相关试题推荐
设z=f(xy)+yφ(x+y),且f,φ具有二阶连续偏导数,求
下列广义积分发散的是().
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
函数f(x,y)=不连续的点集为()
过曲线y=(x≥0)上的点A作切线,使该切线与曲线及x轴所围成的平面图形的面积为3/4,则点A的坐标为().
设f(χ)=sinχ,求f(χ)的间断点并判断其类型.
求f(x)=的间断点并判断其类型。
求极限。
0显然积分难以积出.考虑积分中值定理,其中ξx介于a,a+a之间.所以
用拉格朗日中值定理.[*]且函数f(t)=lnt在[x,1+x]上满足拉格朗日中值定理,所以存在ξ∈(x,1+x),使得[*]
随机试题
在对炭疽的防治措施中错误的是()
学制建立的依据包括()。
_______的作用是将制冷剂从蒸发器吸收来的热和压缩机作功转换的热排放出去,即把送进冷凝器的高温、高压气体制冷剂,用发动机的冷却风扇和汽车行驶时产生的自然风进行强制冷却,使之成为温度较高的高压液体制冷剂。
Notuntilquiterecently______hegaveuphisplantogoabroad.
分包商应立即执行的变更指令包括()的书面指令。
根据我国《合同法》的规定,承诺可以撤回,撤回承诺的通知应当在()到达要约人。
下列水利工程项目属于公益性项目的有()。
在报表管理系统中,定义报表格式包括的内容有()。
下列有关数据库的描述中,正确的是()。
RemovingDamsP1:Inthelastcentury,manyofthedamsintheUnitedStateswerebuiltforwaterdiversion,agriculture,factor
最新回复
(
0
)