首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,β=,Ax=β有解但不唯一。 求可逆矩阵P,使得P-1AP为对角矩阵;
设矩阵A=,β=,Ax=β有解但不唯一。 求可逆矩阵P,使得P-1AP为对角矩阵;
admin
2019-12-24
52
问题
设矩阵A=
,β=
,Ax=β有解但不唯一。
求可逆矩阵P,使得P
-1
AP为对角矩阵;
选项
答案
由|λE-A|=[*]=λ(λ+3)(λ-3)=0, 解得λ
1
=0,λ
2
=-3,λ
3
=3。 当λ
1
=0时,根据(0E-A)x=0,得对应于特征值0的特征向量为ξ
1
=[*]; 当λ
2
=-3时,根据(-3E-A)x=0,得对应于特征值-3的特征向量为ξ
2
=[*]; 当λ
3
=3时,根据(3E-A)x=0,得对应于特征值3的特征向量为ξ
3
=[*]。 令P=(ξ
1
,ξ
2
,ξ
3
)=[*],则P
-1
AP=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/zmD4777K
0
考研数学三
相关试题推荐
设f(x)在[-δ,δ]有定义,且f(0)=f’(0)=0,f’’(0)=a>0,又收敛,则p的取值范围是()。
设二次型f(x1,x2,x3)=(x1,x2,x3),已知它的秩为1。(Ⅰ)求a和二次型f(x1,x2,x3)的矩阵。(Ⅱ)作正交变换将f(x1,x2,x3)化为标准二次型。
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1—p,Y服从标准正态分布N(0,1).求:(I)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设随机变量(X,Y)在区域D={(x,y)|0≤x≤2,0≤y≤1)上服从均匀分布,令(1)求(U,V)的联合分布;(2)求ρUV.
随机试题
抗胃食管反流屏障功能包括
A.刺激外周化学感受器B.刺激中枢化学感受器C.直接抑制呼吸中枢D.直接刺激呼吸中枢
男,10岁。发现眼睑水肿3天,尿如深茶色1天,病前3周曾患皮肤脓疱疮。查体:BP130/90mmHg,P110次/分,肝于右肋下1cm,有压痛,双下肢轻度凹陷性水肿。目前首选的治疗措施是给予
患者,女,16岁。诊断为缺铁性贫血入院。护士为其进行饮食指导时,最恰当的食物组合是
某桥梁工地的简支板梁架设,由专业架梁分包队伍架设。该分包队伍用两台50t履带吊,以双机抬的吊装方式架设板梁。在架设某跨板梁时,突然一台履带吊倾斜,板梁砸向另一台履带吊驾驶室,将一名吊车驾驶员当场砸死,另有一人受重伤。事故发生后,项目经理立即组织人员抢救伤
A股份有限公司拟收购本公司一部分股份,用于奖励为公司做出杰出贡献的10名职工,根据公司法律制度的规定,下列其拟定的收购计划方案中,正确的有()。
狭义的国际收支是指()。
阅读程序:FunctionF(aAs-Integer)b=0Staticcb=b+1c=c+1F=a+b+cEndFunctionPrivateSub
Completethediagrambelow.WriteNOMORETHANTWOWORDSforeachanswer.
A、Applyfortherefund.B、Closethedoorwhenleaving.C、Takeapart-timejob.D、Findasafedepartment.A事实细节题。对话最后女士建议男士最好马上申请
最新回复
(
0
)