首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
America’s Brain Drain Crisis Losing the Global Edge William Kunz is a self-described computer geek. A more apt descrip
America’s Brain Drain Crisis Losing the Global Edge William Kunz is a self-described computer geek. A more apt descrip
admin
2010-09-25
40
问题
America’s Brain Drain Crisis
Losing the Global Edge
William Kunz is a self-described computer geek. A more apt description might be computer genius. When he was just 11, Kunz started writing software programs, and by 14 he had created his own video game. As a high school sophomore in Houston, Texas, he won first prize in a local science fair for a data encryption (编密码) program he wrote. In his senior year, he took top prize in an international science and engineering fair for designing a program to analyze and sort DNA patterns.
Kunz went on to attend Carnegie Mellon, among the nation’s highest-ranked universities in computer science. After college he landed a job with Oracle in Silicon Valley, writing software used by companies around the world.
Kurtz looked set to become a star in his field. Then he gave it all up.
Today, three years later, Kurtz is in his first year at Harvard Business School. He left software engineering partly because his earning potential paled next to friends who were going into law or business. He also worried about job security, especially as more companies move their programming overseas to lower costs. "Every time you’re asked to train someone in India, you think, ’Am I training my replacement?’" Ktnz says.
Things are turning out very differently for another standout in engineering, Qing-Shan Jia. A student at Tsinghua University in Beijing, Jia shines even among his gifted cohorts(一群人) at a school sometimes called "the MIT of China". He considered applying to Harvard for his PhD, but decided it wasn’t worth it.
His university is investing heavily in cutting-edge research facilities, and attracts an impressive roster of international professors. "I can get a world-class education here and study with world-class scholars," Jia says.
These two snapshots (快照) illustrate part of a deeply disturbing picture. In the disciplines underpinning the high-tech economy-math, science and engineering-America is steadily losing its global edge. The depth and breadth of the problem is clear:
- Several of America’s key agencies for scientific research and development will face a retirement crisis within the next ten years.
- Less than 6% of America’s high school seniors plan to pursue engineering degrees, down 36% from a decade ago.
- In 2000, 56% of China’s undergraduate degrees were in the hard sciences; in the United States, the figure was 17%.
- China will likely produce six times the number of engineers next year than America will graduate, according to Mike Gibbons of the American Society for Engineering Education. Japan, with half America’s population, has minted (铸造)twice as many in recent years.
"Most Americans are unaware of how much science does for this country and what we stand to lose if we can’t keep up," says Shirley Ann Jackson, president of Rensselaer Polytechnic Institute and chair of the American Association for the Advancement of Science. David Baltimore, president of the California Institute of Technology and a Nobel laureate, puts it bluntly: "We can’t hope to keep intact our standard of living, our national security, our way of life, if Americans aren’t competitive in science."
The Crisis Americans Created
In January 2001, the Hart-Rudman Commission, tasked with finding solutions to America’s major national security threats, concluded that the failures of America’s math and science education and America’s system of research "pose a greater threat...than any potential conventional war."
The roots of this failure lie in primary and secondary education. The nation that produced most of the great technological advances of the last century now scores poorly in international science testing. A 2003 survey of math and science literacy ranked American 15-year-olds against kids from other industrialized nations. In math, American students came in 24th out of 28 countries; in science, Americans were 24th out of 40 countries, tied with Latvia. This test, in conjunction with others, indicates Americans start out with sufficient smarts-their fourth-graders score well-but they begin to slide by eighth grade, and sink almost to the bottom by high school.
Don’t blame school budgets. Americans shell out more than $440 billion each year on public education, and spend more per capita than any nation save Switzerland. The problem is that too many of their high school science and math teachers just aren’t qualified. A survey in 2000 revealed that 38% of math teachers and 28% of science teachers in grades 7~12 lacked a college major or minor in their subject area. In schools with high poverty rates, the figures jumped to 52% of math teachers and 32% of science teachers. "The highest predictor of student performance boils down to teacher knowledge," says Gerald Wheeler, executive director of the National Science Teachers Association. To California Congressman Buck McKeon, a member of the House Committee on Education and the Workforce, it comes down to this: "How can you pass on a passion to your students if you don’t know the subject?"
Perhaps it’s no surprise that, according to a 2004 Indiana University survey, 18% of college prep kids weren’t taking math their senior year of high school. "When I compare our high schools to what I see when I’m traveling abroad, I’m terrified for our workforce of tomorrow," Microsoft chairman Bill Gates told a summit of state governors earlier this year. "Our high schools, even when they’re working exactly as designed, cannot teach our kids what they need to know today."
The Bush Administration has also proposed cutting the fiscal 2006 budget for research and development in such key federal agencies as the National Oceanic and Atmospheric Administration and the National Institute of Standards and Technology, the latter of which acts as a liaison(联络) with industry and researchers to apply new technology.
"Funding cuts are job cuts," says Rep. Vernon J. Ehlers, Republican of Michigan and a member of the Science Committee in the House. Reduced funding has put the squeeze on research positions, further smothering incentives(动机) for students to go into hard science.
What Americans Must Do
Americans have done it before: the Manhattan Project, the technology surge that followed Sputnik. They’ve demonstrated that they can commit themselves to daunting goals and achieve them. But they can’t minimize the challenges they’re facing.
Americans need out-of-the-box thinking, of the sort suggested by experts in a report released in October called "Rising above the Gathering Storm", a study group within the National Academy of Sciences, which included the National Academy of Engineering and the Institute of Medicine, came up with innovative proposals. Among them are:
- Four-year scholarships for 25,000 undergraduate students who commit to degrees in math, science or engineering, and who qualify based on a competitive national exam;
- Four-year scholarships for 10,000 college students who commit to being math or science teachers, and who agree to teach in a public school for five years after graduation;
- Extended visas for foreign students who earn a math or science PhD in the United States, giving them a year after graduation to look for employment here. If they find jobs, work permits and permanent residency status would be expedited.
Many experts are also urging that non-credentialed but knowledgeable people with industry experience be allowed to teach. That experiment is already underway at High Tech High in San Diego. Conceived by Gary Jacobs, whose father founded Qualcomm, this charter school stresses a cutting-edge curriculum, whether the classes are on biotechnology or web design. To teach these courses, the school hires industry professionals. High Tech High also arranges internships at robotics labs, Internet start-ups and university research centers.
In just five years, 750 kids have enrolled, three classes have graduated and the vast majority of students have gone on to college. One of the success stories is Jeff Jensen, class of 2005, who was a decidedly apathetic (缺乏兴趣的) student before High Tech High. He is now a freshman at Stanford University on a partial scholarship, planning to study chemistry or medicine.
IBM is one of the companies encouraging its workers to teach. This past September, IBM announced a tuition-assistance plan, pledging to pay for teacher certification as well as a leave of absence for employees who wish to teach in public schools.
The philanthropic (博爱的) arms of corporations are also getting involved. The Siemens Foundation sponsors a yearly math, science and technology competition, considered the Nobel Prize for high school research and a great distiller of American talent. Honeywell spends $2 million each year on science programs geared to middle school students, including a hip-hop touring group that teaches physical science, and a robotics lab program that teaches kids how to design, build and program their own robot. "We’ve found that if we don’t get kids excited about science by middle school, it’s too late," says Michael Holland, a spokesperson for Honeywell.
As important as all these initiatives are, they barely begin to take Americans where they need to go. Americans’ shortcomings are vast, and time, unfortunately, is working against them.
"The whole world is miming a race," says Intel’s Howard High, "only we don’t know it." No one knows whether or when the United States will relinquish (放弃) its lead in that race. Or how far back in the pack they could ultimately fall. But the first order of business is to recognize what’s at stake and get in the game.
At High Tech High, ______ are hired to teach courses on biotechnology or web design.
选项
答案
industry professionals/(non-credentialed but)knowledgeable people with industry experience
解析
根据题干中的信息词High Tech High和hired定位到第三个小标题下的第三段,可知许多专家建议让没有证书但拥有行业经验的博学人士参与教学,该实验正在High Tech High中进行,由此可得答案。下文又提到为了教授生物工艺或网络设计等课程,该校还聘请了行业专业人员,由此也可得答案。
转载请注明原文地址:https://kaotiyun.com/show/0Ez7777K
0
大学英语六级
相关试题推荐
Themoretimeswehavewalkedaroute,thelongerwejudgeittobe,aUKresearcherhasconfirmed.His【B1】______couldhelpexp
A、Thedistance-learningcourseisfreeofcharge.B、Thedistance-learningcourseistaughtbyprofessorsoverseas.C、Thereisno
StevenWeinbergisthatkindofpersonwhonotonlywouldliketohelpothers,butreallyenjoyingdoingso.Thatis【C1】______h
A、Enoughfoodforaweek.B、Asleepingbagandaraincoat.C、Hikingbootsandbathingsuit.D、Acampingtent.C从选项中可推知,问题可能问的是外
A、Ellinwood.B、Reuter.C、Hardin.D、Thewoman.C在这个对话里已经包含了一个问题。而且答题者要回答的也是同一个性质的问题。但由于第一个问题里的两个人都不是正确答案,这就增加了我们答题的难度。其实女士的回答就是本
Aimedatpromotingfriendlyrelationshipwithothercountries____________(并增进他们对汉语和中国文化的了解),"ConfuciusInstitute"hasbeenset
Freelancephotographycanbeahighly【B1】______careerandcanpotentiallytakeyouaroundtheworld.Thescopeforworkislar
A、Countingsheep.B、Taking:sleepingpills.C、Drinkingcoffee.D、Drinkingmilk.A细节题。问的是对话中所提到的帮助睡眠的老方法,尽管答案都用来帮助睡眠,但是文章中只提到了一种
A、Informationinshort-termmemoryisdifferentfromthatinlong-termmemoryonlyincontent.B、Long-termmemorycanbeachieve
A、Theentertainmentoncampus.B、Theentertainmentfacilitiesstudentsuseintown.C、Thekindsoffilmsandplaysstudentsenjo
随机试题
电力系统内部过电压的高低与哪些因素有关?
市政职能的确立和调整必须遵循哪些原则?
Ahighschoolhistoryteacheroncetoldus,"ifyoumakeoneclosefriendinschool,youwillbemostfortunate.Atruefriend
患者女性,50岁,因腹痛、呕吐、停止排气排便就诊,尿量600ml/d。查体:血压100/70mmHg,皮肤干燥,眼球下陷,腹胀,肠鸣音亢进,白细胞12×109/L,血清钾3.7mmol/L,血清钠128mmoL/L,血清氯101mmol/L。
大补元煎的药物组成有
某建筑柱下桩基,为9桩承台,柱及承台相关尺寸如图6.1.4所示,柱位于承台中心,柱截面尺寸为700mm×600mm,相应于作用的基本组合的柱轴压力值F=3600kN,承台高为1.2m,承台采用C25混凝土(f1=1.27N/mm2),取h0=1.1m。桩截
流动比率反映的是()。
下列关于无形资产说法中,不正确的是()。
有人说,珍藏是一种智慧;也有人说,放弃是一种哲学。请结合自身,谈谈你对这句话的理解。
在舆论的风口浪尖上已然登场的“谢师宴”现象,已经成为各类媒体争相评说的热点;有些地方还专门下“令”,严禁党员、干部操办、参加各类“谢师宴”,违者要先免职后处分。“谢师宴”俨然成了奢侈、腐败的代名词。但是对于参加完高考的学生而言,能够做到“上知天文、下晓地理
最新回复
(
0
)