首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且,试证(1)存在,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且,试证(1)存在,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
admin
2016-03-26
73
问题
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且
,试证(1)存在
,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
选项
答案
(1)令φ(x)=f(x)一x,则φ(x)在[0,1]上连续.又φ(1)=一1<0,[*],由介值定理可知,存在[*]使得φ(η)=f(η)一η=0即 f(φ)=φ (2)要证/(ξ)一λ[f(ξ一ξ]=1,即要证[f’(ξ)一1]一λ[f(ξ一ξ]=0也就是要证 φ’(ξ一λξ(ξ)=0,因此构造辅助函数F(x)=e
-λx
φ(x)=e
-λx
[f(x)一x]则F(x)在[0,η]上满足罗尔定理的条件,故:存在ξ∈(0,η).使得F’(ξ)=0.即e
-λξ
[φ’(ξ)一λφ(ξ]=0而e
-λξ
≠0,从而有 φ’(ξ)一λφ(ξ)=0即 f’(ξ)一λ[f(ξ)一ξ]=1
解析
转载请注明原文地址:https://kaotiyun.com/show/0sT4777K
0
考研数学三
相关试题推荐
1938年11月,毛泽东在《战争和战略问题》中明确指出:“共产党的任务,基本地不是经过长期合法斗争以进入起义和战争,也不是先占城市后取乡村,而是走相反的道路。”从此,党把经过长期武装斗争,先占乡村,后取城市,最后夺取全国胜利,作为革命道路确立下来。初步形成
党的十一届六中全会通过的《关于建国以来党的若干历史问题的决议》指出,毛泽东思想的活的灵魂,是贯穿于毛泽东思想各个理论组成部分的立场、观点和方法,它们有三个基本方面,即
下列关于经济基础和上层建筑的正确理解是
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
求下列隐函数的指定偏导数:
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
烟囱向其周围地区散落烟尘而污染环境.已知落在地面某处的烟尘浓度与该处至烟囱距离的平方成反比,而与该烟囱喷出的烟尘量成正比.现有两座烟囱相距20km,其中一座烟囱喷出的烟尘量是另一座的8倍,试求出两座烟囱连线上的一点,使该点的烟尘浓度最小.
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
随机试题
Happinesscanbedescribedasapositivemoodandapleasantstateofmind.Accordingtorecentpolls(民意测试),sixtytoseventype
A.睑板腺感染B.睫毛毛囊及其附属感染C.无菌性肉芽肿型炎症D.维生素B2缺乏E.皮脂腺溢出眦部睑缘炎
下列提法不正确的是:
根据《中华人民共和国物权法》的规定,债务人或者第三人有权将()出质。
下列关于认股权证和以股票为标的物的看涨期权的表述中,正确的有()。
北京史家胡同小学开展“小博士”工程,利用课余时间,少则两周,多则三四个月,自己研究探索一个专题或完成一部童话作品。此活动的开展体现了()。
个性结构中最活跃的因素是指()
发起者无须花钱,在某种出版媒体上发布重要商业新闻,或者在广播、电视中和银幕、舞台上获得有利的报道、展示、演出用这种非人员形式来刺激目标顾客对某种产品、服务或商业单位的需求。这种销售策略是()。
Thenewspaperreport______withtheaccountoftheaccidentontheradio.
IntheUnitedStates,whenyougetyourpaycheckattheendofthefirstpayperiodatanewjob,it’salwaysinterestingtosee
最新回复
(
0
)