首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=( )
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=( )
admin
2017-01-14
28
问题
α
1
,α
2
,α
3
,β
1
,β
2
均为四维列向量,A=(α
1
,α
2
,α
3
,β
1
),B=(α
3
,α
1
,α
2
,β
2
),且|A|=1,|B|=2,则|A+B|=( )
选项
A、9。
B、6。
C、3。
D、1。
答案
B
解析
由矩阵加法公式,得A+B=(α
1
+α
3
,α
2
+α
1
,α
3
+α
2
,β
1
+β
2
),结合行列式的性质有
|A+B|=|α
1
+α
3
,α
2
+α
1
,α
3
+α
2
,β
1
+β
2
|
=|2(α
1
+α
2
+α
3
),α
2
+α
1
,α
3
+α
2
,β
1
+β
2
|
=2|α
1
+α
2
+α
3
,α
2
+α
1
,α
3
+α
2
,β
1
+β
2
|
=2|α
1
+α
2
+α
3
,-α
3
,-α
1
,β
1
+β
2
|
=2|α
2
,-α
3
,-α
1
,β
1
+β
2
|
=2|α
1
,α
2
,α
2
,β
1
+β
2
|
=2(|A|+|B|)=6。
转载请注明原文地址:https://kaotiyun.com/show/0xu4777K
0
考研数学一
相关试题推荐
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
求下列极限:
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
随机试题
A.降低药物滋腻之性B.增强健脾止泻作用C.降低毒性D.消除副作用E.便于去毛斑蝥米炒的作用是
在上腹部,脐中上2寸,前正中线上的穴位是
进行建设项目经济比选,若不受资金约束,一般采用差额投资内部收益率法、净现值比较法和( )。
关于竣工图测绘的要求,错误的是()。
跨国公司使国际贸易结构中制成品贸易比重下降,初级产品贸易比重上升。()
北京市区的某大型百货商场为增值税一般纳税人,2009年9月发生如下几项业务(如果没有特别说明的,题中的收入均为零售收入):(1)销售散装啤酒400吨,每吨不含税售价2800元。另外,该商场内部设立的“酒坊”生产一种新研制的粮食白酒,广告样品使用0.
根据有关法律规定,下列争议中,诉讼时效期间为1年的是( )。
编制生产预算中的“预计生产量”项目时,需要考虑的因素有()。
人本主义认为心理治疗的目的是使心理疾病患者能自由地实现他自己的潜能,成为功能完善者。()
Wheredoestheinterviewmostlikelytakeplace?
最新回复
(
0
)