首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当0<a<b时,bsinb+2cosb+πb>asina+2cosa+πa.
证明:当0<a<b时,bsinb+2cosb+πb>asina+2cosa+πa.
admin
2016-09-13
29
问题
证明:当0<a<b时,bsinb+2cosb+πb>asina+2cosa+πa.
选项
答案
令F(x)=xsinx+2cosx+πx,只需证明F(x)在(0,π)上单调递增. Fˊ(x)=sinx+xcosx-2sinx+π=π+xcos-sinx, 由此式很难确定Fˊ(x)在(0,π)上的符号,为此有 Fˊˊ(x)=-xsinx<0,x∈(0,π), 即函数Fˊ(x)在(0,π)上单调递减,又Fˊ(π)=0,所以Fˊ(x)>0,x∈(0,π),于是F(b)>F(a),即 bsin b+2cos b+πb>asina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/1PT4777K
0
考研数学三
相关试题推荐
近代中国半殖民地半封建的社会性质和主要矛盾,规定了()。
材料1 习近平总书记在中国政法大学考察时勉励青年学子:“要正确对待一时的成败得失,处优而不养尊,受挫而不短志,使顺境逆境都成为人生的财富而不是人生的包袱。”青春是用来奋斗的,然而不是所有的青年人都愿意选择奋斗。生在富足生活中,长在安定环境下,难免出现满
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
证明[*]
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
根据定义证明:
函数f(x)=(x-x3)sinπx的可去间断点的个数为
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
设(I)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(一∞,1]是否有界,并说明理由.
随机试题
通常将储存()的球罐称为低温球罐。
病历记录时,主诉应简明扼要,一般不超过
男性,55岁,自述头痛、乏力,声音嘶哑,吞咽困难。查体:视力下降,眼睑下垂,瞳孔散大,对光反射迟钝。据悉近2周以来,进食过自制的臭豆腐及鱼制品。该患者最可能的诊断是
在同一个办公建筑的标准层,采用定新风比全空气系统与采用新风加风机盘管空调系统相比,前者需要的以下()更大。
以下情形属于重大设计变更的是()。
单块铝合金窗玻璃的面积大于( )时,应使用安全玻璃。
德育就是政治教育。()
可以在HTML文档中加上阅读者看不见的注释,句法是______。
软件是指
【S1】【S11】
最新回复
(
0
)