首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
admin
2013-09-30
110
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
,…,x
n
)=
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设, [*] 已知A为n阶实对称矩阵,从而上式两边可转置,即 f(x
1
,x
2
, …,x
n
)=(x
1
,x
2
, …,x
n
)=[*] 已知r(a)=n,从而|A|≠0,A可逆,且A
-1
=(1/|A|)A
*
,则由(1)式知 f(x
1
,x
2
, …,x
n
)=X
T
AX
-1
X且(A
T
)
-1
=(A
T
)
T
=A
-1
, 故f(x
1
,x
2
, …,x
n
)=X
2
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)AA
-1
=(A
T
)
-1
E=A
-1
,则A
-1
与A合同,于是g(X)=X
T
X与F(X) 有相同规范形,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/1dF4777K
0
考研数学三
相关试题推荐
《中华人民共和国反外国制载法》于2021年6月10日起施行。这是一部指向性、针对性颇强的专门法律,共有16条,这部法律主要针对的是()。
结合材料回答问题:材料1党的十九届五中全会提出了“十四五”时期经济社会发展指导思想。要高举中国特色社会主义伟大旗帜,深入贯彻党的十九大和十九届二中、三中、四中、五中全会精神,坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要
2021年6月28日,全球在建规模最大、单机容量最大、技术难度最高的水电工程——金沙江白鹤滩水电站首批2台机组投产发电。下列相关说法错误的是()。
求下列三重积分
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
利用极坐标将积分,化成一元函数积分式,其中f连续.
求下列各极限:
随机试题
下列关于欧洲联盟的表述中,不正确的是()。
审美教育
梁的横截面为图示薄壁工字型,z轴为截面中性轴。设截面上的剪力竖直向下,该截面上的最大弯曲切应力在()。
在深圳证券交易所,公司债券的大宗交易、专项资金管理计划协议交易,协议平台的成交确认时间为每个交易日的9:15~11:30和()。
证券公司经营融资融券业务,应以自己的名义,在证券登记结算机构分别开立()。Ⅰ.融券专用证券账户Ⅱ.信用交易证券交收账户Ⅲ.信用交易资金交收账户Ⅳ.客户信用交易担保证券账户
I’dliketotakethisopportunitytoextendmyheart-feltgratitudetothehost.
设A=(A<0),且AX=0有非零解,则A*X=0的通解为______.
当x>0时,f(lnx)=,则∫-22xf’(x)dx为().
ThereisalwaysexcitementattheOlympicGameswhenanathlete(breaks)arecord.
A、Thewomanwillhavelunchwiththemantomorrow.B、Thewomanisonadietrecently.C、Thewomandeclinestheoffer.D、Thewoma
最新回复
(
0
)