首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数) (1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ (2)利用(1)的结论计算定积分|si
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数) (1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ (2)利用(1)的结论计算定积分|si
admin
2019-06-25
82
问题
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)
(1)证明∫
-a
a
f(χ)g(χ)dχ=A∫
0
a
g(χ)dχ
(2)利用(1)的结论计算定积分
|sinχ|arctane
χ
dχ.
选项
答案
由于∫
-a
a
f(χ)g(χ)dχ=∫
-a
0
f(χ)g(χ)dχ+∫
0
a
f(χ)g(χ)dχ 又∫(χ)g(χ)dχ[*]∫f(-t)g(-t)dt=∫f(-t)g(t)dt =∫
0
a
f(-χ)g(χ)dχ 所以∫
-a
a
f(χ)g(χ)dχ=∫
0
a
[f(χ)+f(-χ)]g(χ)dχ=A∫
0
a
g(χ)dχ (2)取f(χ)=arctane
χ
,g(χ)=|sinχ|,a=[*] f(χ)+f(-χ)=arctane
χ
+arctane
-χ
由于(arctane
χ
+arctane
-χ
)=[*]≡0 则arctane
χ
+arctane
-χ
=A 令χ=0,得2arctan1=A,A=[*] 即f(χ)+f(-χ)=[*] 于是有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2TJ4777K
0
考研数学三
相关试题推荐
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则().
一批种子良种占从中任取6000粒,计算这些种子中良种所占比例与之差小于0.01的概率.
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:不超过三次取到次品.
设f(x)连续,且证明:若f(x)是偶函数,则F(x)为偶函数;
求曲线的上凸区间.
设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过5的概率.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若λ2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别向量求Anβ.
设A为n阶实对称可逆矩阵,二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
(2011年)设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn(n≥2)为来自总体的简单随机样本,则对应的统计量T1=Xi,T2=Xi+Xn()
随机试题
可转换债券的赎回价格是事先约定的,一般为可转换债券面值的()
细胞滋养层
动物疾病发展过程中,从疾病出现最初症状到主要症状开始暴露的时期称为()
会计核算软件应能打印下列()数据。
股份支付的内在价值是指交易对方有权认购或取得的股份的公允价值。()
我国内地第一个大型主题公园是()。
阅读以下材料,完成下列问题。2012年山东省农村居民人均总收入13645.26元,同比增长12.34%。分类项目中,工资总收入4383.22元,同比增长17.98%,其中,在本乡地域内劳动得到收入2615.32元,外出就业得到收入1448.4元,同比分别
2009年末我国广义货币供应量(M2)余额为60.6万亿元,比上年末增长27.7%;狭义货币供应量(M1)余额为22.0万亿元,增长32.4%;流通中现金(M0)余额为3.8万亿元,增长11.8%。年末全部金融机构本外币各项存款余额61.2万亿元
若变量x、y已正确定义并赋值,以下符合C语言语法的表达式是
WhywastheWorldHealthDayrecognizedbyWHO?WhatcanbedoneinordertopreventababydyingfromAIDSviruspassedbyits
最新回复
(
0
)