首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则( ).
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则( ).
admin
2018-04-15
56
问题
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则( ).
选项
A、r(B)=n
B、r(B)<n
C、A
2
一B
2
=(A+B)(A—B)
D、|A|=0
答案
D
解析
因为AB=0,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)<n,于是|A|=0,选(D).
转载请注明原文地址:https://kaotiyun.com/show/M0X4777K
0
考研数学三
相关试题推荐
设f(x)为[一a,a]上的连续的偶函数且f(x)>0,令F(x)=|x—f|f(t)dt.(Ⅰ)证明:F’(x)单调增加.(Ⅱ)当x取何值时,F(x)取最小值?(Ⅲ)当F(x6)的最小值为f(a)一a2一1时,求函数f(x).
设A为m×n矩阵,对n元非齐次线性方程组AX=b,下列结论正确的是().
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.(X,Y)的概率分布,
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使;(Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.Q及A;
设二元函数u=u(x,y)有二阶连续偏导数,并满足方程,且u(x,2x)=x,uˊx=(x,2x)=x2,求uˊˊxx(x,2x),uˊˊxy(x,2x),uˊˊyy(x,2x).
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C,求出该二次型.
设D为曲线y=x3与直线y=x所围成的两块区域,计算
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
对出血坏死性胰腺炎最具诊断价值的是
加工贸易企业应在下列环节向海关如实申报单耗标准:
下列关于贷款损失准备金计提原则的说法中,正确的是()。
小张毕业后进入了一家广告公司,凭着过硬的专业素质和不懈的努力很快成为公司的业务骨干,并被提拔为部门经理。但让公司领导略感意外的是,小张升为主管后虽然依然工作勤恳,但他所管理的部门的整体业绩反而较先前有所下降。通过私下询问,员工们普遍反映小张对下属缺乏适当的
阅读下面的短文,完成问题。矛盾普遍存在于客观世界中,模糊性亦寓于万物运动之中。鸡蛋可以孵鸡,当小鸡未啄出蛋壳时,总不能说它仍是蛋,亦不可称之为鸡,突变的事物会呈现短暂的模糊性,而另一些事物放到漫长的时间里考察也会使模糊性突出显现。铅块上
简述牙排列的颊舌向的倾斜规律。
普通话语音系统中,有字音节约有_____个。
国家性质是国家制度的()
以下关于数据组织的描述中,错误的是()。
Accordingtothehostess,whatisthereasonforincreasedcompetitioninclothingindustry?
最新回复
(
0
)