首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆; (Ⅱ)BTB是正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆; (Ⅱ)BTB是正定矩阵.
admin
2020-01-15
123
问题
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A
2
α线性无关,且A
3
α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A
4
α)可逆;
(Ⅱ)B
T
B是正定矩阵.
选项
答案
(Ⅰ)由于A
3
α=3Aα一2A
2
α,故 A
4
α=3A
2
α一2A
3
α=3A
2
α一2(3Aα一2A
2
α)=7A
2
α一6Aα. 若k
1
α+k
2
Aα+k
3
A
4
α=0,即k
1
α+k
2
Aα+k
3
(7A
2
α一6Aα)=0, 亦即k
1
α+(k
2
—6k
3
)Aα+7k
3
A
2
α=0,因为α,Aα,A
2
α线性无关,故 [*] 所以,α,Aα,A
4
α线性无关,因而矩阵B可逆. (Ⅱ)因为(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B是对称矩阵.又[*]x≠0,由于矩阵B可逆,恒有Bx≠0,那么恒有x
T
(B
T
B)x=(Bx)
T
(Bx)>0,故二次型x
T
(B
T
B)x是正定二次型,从而矩阵B
T
B是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/2WA4777K
0
考研数学二
相关试题推荐
=_______.
∫01xarcsinxdx=_________.
设f’(0)=1,f(0)=0,则=________.
求下列函数的极值:(1)z=x2-xy+y2+9x-6y+20(2)z=4(x-y)-x2-y2。(3)z=x3+y3-3xy(4)z=xy(a-x-y)(a≠0)
设矩阵(1)已知A的一个特征值为3,试求y;(2)求矩阵P,使(AP)T(AP)为对角矩阵.
设f(χ)连续,f(0)=0,f′(0)=1,求[∫-aaf(χ+a)dχ-∫-aaf(χ-a)dχ].
求函数的导数:y=ef(x).f(ex).
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
在椭圆内嵌入有最大面积的四边平行于椭圆轴的矩形,求该最大面积.
随机试题
抗磷脂抗体综合征临床上可表现为
A.磨光面B.颊面C.咬合面D.组织面E.抛光面与水平力量有关,使义齿保持稳定的表面是
A.归肾丸B.人参养荣汤C.加减一阴煎D.血府逐瘀汤E.苍附导痰丸
甲请A搬家公司搬家,A公司派出BCD三人前往。在搬家过程中,B发现甲的掌上电脑遗落在一角,便偷偷藏人自己腰包;C与D在搬运甲最珍贵的一盆兰花时不慎将其折断,为此甲与CD二人争吵起来,争吵之时不知是谁又将甲阳台上的另一盆鲜花碰下,砸伤路人E。BCD见事已至此
某企业由一位总经理和两位副总经理组成的领导班子,工作有魄力,开拓创新意识强,经常超负荷工作,该企业产品在市场有一定的竞争能力,企业经济效益也不错,但近一段时期来,随着业务量增大,企业经营状况有所下降。为改变这种状况,总经理召集20多个部门的负责人及全体领导
一般酒中的酒精成分高于()度以上者称为高度酒。
秦王向韩非子询问治国理政的办法,韩非子的回答是“明主之国,无书简之文,以法为教;无先王之语,以吏为师;无私剑之捍,以斩首为勇”。下列选项中因韩非子的建议导致的结果描述正确的是()。
Professional______referstocoverageofrisksraisedbyprofessionaladvisoryandserviceprovidersiftheygiveclientsinsuffi
把目标程序中的逻辑地址转换成主存空间的物理地址称为( )。
WhatisCanonDigitalPowerShots230camera’ssize?______
最新回复
(
0
)