首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
已知向量组试讨论其线性相关性.若线性相关,则求出一组不全为零的数k1,k2,k3使得k1α1+k2α2+k3α3=0.
已知向量组试讨论其线性相关性.若线性相关,则求出一组不全为零的数k1,k2,k3使得k1α1+k2α2+k3α3=0.
admin
2014-09-27
89
问题
已知向量组
试讨论其线性相关性.若线性相关,则求出一组不全为零的数k
1
,k
2
,k
3
使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0.
选项
答案
构造矩阵A=(α
1
,α
2
,α
3
),利用矩阵的初等行变换将Ax=0的系数矩阵化成简化行阶梯形矩阵.[*] 因为r(A)=2<3,所以Ax=0有非零解,从而向量组线性相关. 方程x
1
α
1
+x
2
α
2
+x
3
α
3
=0.的同解线性方程组为[*] 令x
3
=1,可得一组解为x
1
=一2,x
2
=1,x
3
=1. 取k
1
=一2,k
2
=1,k
3
=1,得一2α
1
+α
2
+α
3
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/2cyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
《一句话》中,火山爆发的寓意是民众革命,这种表现方法可以称为
《湘夫人》的主要艺术特征是
阅读下面一段文字,回答问题:后窗的玻璃上丁丁地响,还有许多小飞虫乱撞。不多久,几个进来了,许是从窗纸的破孔进来的。他们一进来,又在玻璃的灯罩上撞得丁丁地响。一个从上面撞进去了,他于是遇到火,而且我以为这火是真的。两三个却休息在灯的纸罩上喘气。那罩是昨晚新
《五代史伶官传序》引用《尚书》中“满招损,谦得益”的名言证明后唐庄宗是因骄傲而亡国的道理,所用的论证方法是
阅读《牡丹的拒绝》中的一段文字,回答问题:其实你在很久以前并不喜欢牡丹。因为它总被人作为富贵膜拜。后来你目睹了一次牡丹的落花,你相信所有的人都会为之感动:一阵清风徐来,娇艳鲜嫩的盛期牡丹忽然整朵整朵她坠落,铺散一地绚丽的花瓣。那花瓣落地时依然鲜艳
设向量组.求该向量组的秩和一个极大线性无关组.
f(x1,x2,x3)=(k+1)x12+kx22+(k一2)x32为正定二次型,则k________.
设三阶实对称矩阵A满足A2+2A=0,而且r(A)=2.求出A的全体特征值.
若X的方差存在,a,b为常数,则一定有D(aX+b)=【】
随机试题
在教育人员自我管理中如何贯彻理想与现实统一的原则?
某女,24岁。患贫血3年。面色苍白,形寒肢冷,腰膝酸软,神倦耳鸣,唇甲淡白,周身浮肿,舌淡有齿痕,脉沉细。其证型为
如图5-10所示桁架,在节点C处沿水平方向受力F作用。各杆的抗拉刚度相等。若结点C的铅垂位移以sC表示,BC杆的轴力以FNBC表示,正确的为()。
Haveyoueverfeltstressed?What’syourstress?WriteacompositioninEnglishabouthowyourstressimpactsonyouandhowyou
马克思主义新世界观创立的关键在于马克思确定了()。
银河落九天
下列属于“初唐四杰”作品的有_______。
拥挤的居住条件所导致的市民健康状况明显下降,是清城面临的重大问题。因为清城和广川两个城市的面积和人口相当,所以,清城所面临的上述问题必定会在广川出现。以下哪项最为恰当地指出了上述论证的漏洞?
TCP/IP(71)layer protocols provide services to the application(72)running on a computer. The application layer does not define th
对建立良好的程序设计风格,下面描述正确的是()。
最新回复
(
0
)