首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0.已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程.
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0.已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程.
admin
2016-06-27
201
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0.已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程.
选项
答案
旋转体的体积为V=∫
1
t
πf
2
(x)dx=πf
1
t
f
2
(x)dx, 曲边梯形的面积为:s=∫
1
t
f(x)dx,则由题可知 π∫
1
t
f
2
(x)dx=πt∫
1
t
f(x)dx,即∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx. 两边对t求导可得f
2
(t)=∫
1
t
f(x)dx+tf(t),即f
2
(t)一tf(t)=∫
1
t
f(x)dx, (*) 等式两端求导可得2f(t)f’(t)一f(t)一tf’(t)=f(t),化简可得(2f(t)一t)f’(t)=2f(t),即[*] 在(*)式中令t=1,则f
2
(1)一f(1)=0,因为已知f(x)>0,所以f(1)=1,代入[*] 所以该曲线方程为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3FT4777K
0
考研数学三
相关试题推荐
我国在历史上长期处于世界领先地位,我国思想文化、社会制度、经济发展、科学技术以及其他许多方面对周边发挥了重要辐射和引领作用,中华文明对世界文明进步作出了巨大贡献,产生了深远影响。究其深层精神根源,就在于()。
恩格斯说:“……这个原理看起来很简单,但是仔细考察一下也会立即发现,这个原理的最初结论就给一切唯心主义,甚至给最隐藏的唯心主义当头一棒。关于一切历史的东西的全部传统的和习惯的观点都被这个原理否定了。”“这个原理”指的是()。
道德作为一种特殊的社会意识形式,归根到底是由经济基础决定的,是社会经济关系的反映。这是因为()。
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
证明下列函数当(x,y)→(0,0)时极限不存在:
利用等价无穷小的代换性质,求下列极限:
随机试题
______,Idon’tthinkthecandidatehasachanceofwinningtheelectiontheyear.
下面哪项的直肠癌位于手指可触及的部位:
某大学有数百名学生突然去校医院看病,主要症状为腹痛、腹泻(一般每天5~8次),体温升高多在38℃以上。经调查,发病者中午都在学校食堂用餐,中午没有在食堂用餐者,没有发病。初步估计为食物中毒引起的暴发,如果派你去调查处理这次暴发,那么你需要采集的样品不包括下
某直立土坡坡高为10m,坡顶上重要建筑物至坡顶距离为8.0m,主动土压力为Ea,静止土压力为E0,支护结构上侧向岩土压力宜为()。
根据《企业会计制度》的规定,下列各项中,应计入企业产品成本的有()。
银行大堂经理向客户介绍个人理财产品,属于理财顾问服务。()
在质量改进过程中,如果分析现状用的是排列图,确认效果时必须用()。
中国共产党在中央机关设立的最早的保卫组织是( )。
集中打击或专项斗争,多数情况下由各省、自治区、直辖市从当地社会治安情况出发,()地开展。
判定人数、年龄、经费开支时可用的测量是()
最新回复
(
0
)